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Dynamical mean-field theory of noisy spiking neuron ensembles:
Application to the Hodgkin-Huxley model

Hideo Hasegawa*
Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan

~Received 16 April 2003; published 14 October 2003!

A dynamical mean-field approximation~DMA ! previously proposed by the present author@H. Hasegawa,
Phys. Rev E67, 041903~2003!# has been extended to ensembles described by a general noisy spiking neuron
model. Ensembles ofN-unit neurons, each of which is expressed by coupledK-dimensional differential equa-
tions ~DEs!, are assumed to be subject to spatially correlated white noises. The originalKN-dimensional
stochasticDEs have been replaced byK(K12)-dimensionaldeterministicDEs expressed in terms of means
and the second-order moments oflocal and global variables: the fourth-order contributions are taken into
account by the Gaussian decoupling approximation. Our DMA has been applied to an ensemble of Hodgkin-
Huxley ~HH! neurons (K54), for which effects of the noise, the coupling strength, and the ensemble size on
the response to a single-spike input have been investigated. Numerical results calculated by the DMA theory
are in good agreement with those obtained by direct simulations, although the former computation is about a
thousand times faster than the latter for a typical HH neuron ensemble withN5100.

DOI: 10.1103/PhysRevE.68.041909 PACS number~s!: 87.10.1e, 84.35.1i, 05.45.2a, 07.05.Mh
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I. INTRODUCTION

It is well known that a small cluster of cortex may conta
thousands of similar neurons. Each neuron, which rece
spikes from hundreds of other neurons, generates sp
propagating along the axon towards synapses exciting
rons in the next stage. Dynamics of an individual neur
with voltage-dependent ionic channels can be described
the Hodgkin-Huxley-type~HH! model @1#, or by reduced,
simplified neuron models such as integrate-and-fire~IF!,
FitzHugh-Nagumo~FN! @2,3#, and Hindmarsh-Rose~HR!
models@4#. Although the response of a single neuronin vitro
is rather accurate, that invivo is not reliable@5#. This is due
to noisy environment in living brains, where various kinds
noises are reported to be ubiquitous~for a review see Ref.
@6#!. In recent years, the population of neuron ensembles
been recognized to play important roles in the informat
transmission~pooling effect! @7–12#. Then it is necessary fo
us to theoretically investigate high-dimensional, stocha
differential equations~DEs! describing the large-scale nois
neuron ensemble. In order to make our discussion conc
let us consider ensembles consisting ofN-unit neurons, each
of which is described byK-dimensional coupled DEs: fo
example,K51, 2, 3, and 4 for IF, FN, HR, and HH neuro
models, respectively. Dynamics of such neuron ensemb
expressed byKN-dimensionalstochasticDEs, has been so
far investigated with the use of the two approaches:~i! direct
simulations and~ii ! analytical methods, such as the Fokke
Planck equation~FPE! and the moment method. Simulation
have been made for large-scale networks mostly consis
of IF neurons. Since the CPU time to simulate networks
conventional methods is proportional toN2, it is rather dif-
ficult to simulate realistic neuron clusters in spite of rec
computer development. In the FPE dynamics of neuron
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sembles is described by the population activity. Although
FPE is the powerful method formally applicable to the ca
of arbitraryK andN @13#, actual calculations have been ma
mostly forN5` ensembles of aK51 model with the use of
the mean-field and/or diffusion approximations@14#. Similar
population density approaches have been recently develo
for large-scale neuronal clusters@15,16#. The moment
method initiated by Rodriguez and Tuckwell~RT! has been
applied to single FN@17,18# and HH neurons@19,20#. When
the moment method is applied to a single neuron model w
K variables,K-dimensional stochastic DEs are replaced
(1/2)K(K13)-dimensional deterministic DEs. When th
moment method is applied toN-unit neuron ensembles unde
consideration,KN-dimensional stochastic DEs are replac
by Neq-dimensional deterministic DEs whereNeq

5(1/2)KN(KN13) @17#. For example, in the case ofK
52 ~FN model!, the number of equations isNeq5230,
20 300, and 2 003 000 forN510, 100, and 1000, respec
tively. In the case ofK54 ~HH model!, we getNeq5860,
80 600, and 8 006 000 forN510, 100, and 1000, respec
tively. These figures are too large for us to make simulatio
for realistic neuron clusters. In their subsequent paper of
@19#, they transplanted the result of the moment method
HH neuron ensembles to FPE-type equation which has
been solved yet.

In a previous study~Ref. @21# is hereafter referred to as I!,
the present author proposed a semianalytical dynam
mean-field approximation~DMA !, in which equations of
motions for means, variances, and covariances oflocal and
global variables were derived forN-unit FN neuron en-
semble. The original 2N-dimensional stochastic DEs are r
placed by eight-dimensional deterministic DEs:Neq58 is
much smaller than corresponding figures in the mom
method mentioned above. The DMA calculations in I on t
spiking-time precision and the synchronization in FN neur
ensembles are in good agreement with direct simulatio
The feasibility of the DMA has been demonstrated in I.
©2003 The American Physical Society09-1



rs
n
b
by
ur
A
th
n

de
ro
s
ik
-
ts
te
y
en
d
nt
te

iz
, i
d
iv
on

n
b

u-
H
a

-
le

of

d

-

f
the

e

ven

een

i-

the

-

ion
on
ng
,

in a
.

of
ay

HIDEO HASEGAWA PHYSICAL REVIEW E68, 041909 ~2003!
The purpose of the present paper is twofold. The fi
purpose is to extend the DMA of I to general neuron e
sembles subject to white noises described
KN-dimensional stochastic DEs, which will be replaced
K(K12)-dimensional deterministic DEs. The second p
pose of the present paper is to apply the generalized DM
an ensemble of HH neurons, which is more realistic than
FN neuron model previously studied in I. Since Hodgkin a
Huxley proposed the HH model in 1952@1#, many studies
have been intensively made on properties of the HH mo
Responses of a single, pairs, and ensembles HH neu
mostly to direct and sinusoidal currents have been inve
gated. In recent years, responses of HH neurons to sp
train inputs have been studied@22–25#. The stochastic reso
nance~SR! of HH neurons for sinusoidal and spike inpu
with various kinds of added noises has been investiga
@26–33#. These studies have shown that noise can pla
constructive role in signal transmission against our conv
tional wisdom. In most studies on SR, however, noises ad
to ensemble neurons are considered to be independe
each other. Quite recently effects of spatially correla
noises on SR have been investigated@31#, which shows that
although common noises work to enhance the synchron
tion in neuron ensembles, they are not effective for SR
contrast to independent noises. We will adopt in this stu
spatially correlated white noises in order to clarify respect
effects of common and independent noises on the resp
of ensemble neurons.

The paper is organized as follows. In Sec. II, we exte
the DMA theory to general neuron ensembles described
KN stochastic DEs. Our DMA theory is applied to HH ne
ron ensembles in Sec. III. Some numerical results on
neuron ensembles are presented in Sec. IV. Conclusions
discussions are given in Sec. V.

II. DMA FOR A GENERAL NEURON ENSEMBLE

A. Equation of motions

We assume an ensemble ofN-unit neurons (N>2), each
of which is described byK-dimensional nonlinear differen
tial equations~DEs!. Dynamics of a given neuron ensemb
is expressed by

dv i

dt
5F (1)~$uqi%!1S w

N21D (
j (Þ i )

G„v j~ t !…1K (e)~ t !1j i~ t !,

~1!

dupi

dt
5F (p)~$uqi%! ~p52 –K !, ~2!

wherev i5upi with p51 denotes the membrane potential
a neuroni (51 –N), upi with p52 –K stands for auxiliary
variables andF (p) is functions of ($uqi%). The synaptic-
coupling strengthw is assumed to be constant,G(v)51/$1
1exp@2(v2u)/e#% is the sigmoid function with the threshol
u and the widthe @34,35#, and K (e) stands for an applied
external input whose explicit form will be given later@Eq.
~56!#. The last term of Eq.~1! expresses the spatially corre
lated white noisesj i(t) given by
04190
t
-
y

-
to
e

d

l.
ns

ti-
e-

d
a
-

ed
of

d

a-
n
y,
e
se

d
y

H
nd

^j i~ t !&50, ~3!

^j i~ t !j j~ t8!&5@b0
2d i j 1b1

2~12d i j !#d~ t2t8!

5~bC
2 1b I

2d i j !d~ t2t8!, ~4!

wherebC5b1 andb I5Ab0
22b1

2 denote the magnitudes o
common and independent noises, respectively, and
bracket̂ & expresses the stochastic average@36#; the case of
b150 (b15b0) stands for independent~common! noises
only.

In order to derive DEs in the DMA theory, we first defin
the global variables for the ensemble by@21#

Up~ t !5
1

N (
i

upi~ t !, ~5!

and their averages by

mp~ t !5mup
~ t !5^Up~ t !&. ~6!

Deviations from these averages of local variables are gi
by

dupi~ t !5upi~ t !2mup
~ t !, ~7!

and those of global variables given by

dUp~ t !5Up~ t !2mup
~ t !. ~8!

Next we define the variances and covariances betw
local variables given by~argumentt is neglected hereafter!

gp,q5gup ,uq
5

1

N (
i

^dupiduqi&, ~9!

and those between global variables given by

rp,q5rup ,uq
5^dUpdUq&. ~10!

It is noted thatgup ,uq
expresses fluctuations in local var

ables, whilerup ,uq
those in global variables.

We assume that the noise intensity is weak and that
distribution functionp(z) for KN-dimensional random vari-
ables ofz5($upi%) is given by the Gaussian distribution con
centrated near the mean point ofm5($mup

%) @36#. Numerical
simulations have shown that for weak noises, the distribut
of v(t) of the membrane potential of a single HH neur
nearly obeys the Gaussian distribution, although for stro
noises, the distribution ofv(t) deviates from the Gaussian
taking a bimodal form@22,37#. Similar behavior of the
membrane-potential distribution has been reported also
FN neuron model@18,38#. By using Eq.~7!, we express Eqs
~1! and ~2! in a Taylor expansion ofdupi up to the fourth-
order terms. The average yields DEs for the means
dmup

/dt @Eq. ~16!#. DEs of variances and covariances m
9-2
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be obtained by using the equations of motions ofdupi . For
example, the DE fordgup ,uq

/dt is given by

dgup ,uq

dt
5

1

N (
i

K S ]dupi

]t D duqi1dupiS ]duqi

]t D L , ~11!

with

]dupi

]t
5(

q
Fuq

(up)duqi1
1

2 (
q

(
r

Fuqur

(up)
~duqiduri 2guq ,ur

!

1
1

6 (
q

(
r

(
s

Fuqurus

(up) duqiduri duti1dp1S w

N21D
3 (

k(Þ i )
FGu1

du1k1
1

2
Gu1u1

~du1k
2 2g1,1!

1
1

6
Gu1u1u1

du1k
3 G1dp1~K (e)1j i !, ~12!

where q, r , and s run from 1 to K, F (up)5F (p), Fuq

(up)

5]F (p)/]uq , Fuqur

(up)
5]2F (p)/]uq]ur , and Fuqurus

(up)

5]3F (p)/]uq]ur]us are evaluated at the means of ($mup
%),

and similar derivatives forG. In the process of calculation
of means, variances, and covariances, we have taken
account the fourth-order moment contributions with the u
of the Gaussian decoupling approximation, as given by
04190
to
e

^dupiduqiduri dusi&.^dupiduqi&^duri dusi&1^dupiduri &

3^duqidusi&1^dupidusi&^duqiduri &,

~13!

1

N (
i

^dupiduqiduri dusi&

.gup ,uq
gur ,us

1gup ,ur
guq ,us

1gup ,us
guq ,ur

,

~14!

1

N2 (
i

(
j

^dupiduq jdur j dus j&

.rup ,uq
gur ,us

1rup ,ur
guq ,us

1rup ,us
guq ,ur

.

~15!

The importance of including the fourth-order term has be
pointed out by Tanabe and Pakdaman@38# in the improved
moment method for a noisy FN neuron.

After some manipulations, we get DEs for means, va
ances, and covariances given by~details being given in Ap-
pendix A of I!:

dmup

dt
5F (up)1

1

2 (
q

(
r

Fuq ,ur

(up) guq ,ur
1dp1@wU01K (e)#,

~16!
dgup ,uq

dt
5(

r
@Fur

(up)guq ,ur
1Fr

(uq)gup ,ur
#1b0

2dp1dq11wU1@dp1zuq ,u1
1dq1zup ,u1

#1
1

6 (
r

(
s

(
t

@Furusut

(up)
~guq ,ur

gus ,ut

1guq ,us
gur ,ut

1guq ,ut
gur ,us

!1Furusut

(uq)
~gup ,ur

gus ,ut
1gup ,us

gur ,ut
1gup ,ut

gur ,us
!#, ~17!

drup ,uq

dt
5(

r
@Fur

(up)
ruq ,ur

1Fur

(uq)
rup ,ur

#1F 1

N
b0

21S 12
1

NDb1
2Gdp1dq11wU1@dp1ruq ,u1

1dq1rup ,u1
#

1
1

6 (
r

(
s

(
t

@Furusut

(up)
~ruq ,ur

gus ,ut
1ruq ,us

gur ,ut
1ruq ,ut

gur ,us
!1Furusut

(uq)
~rup ,ur

gus ,ut
1rup ,us

gur ,ut

1rup ,ut
gur ,us

!#, ~18!
s-

ith
er,
n-
with

zup ,uq
5S 1

N21D ~Nrup ,uq
2gup ,uq

!, ~19!

U05
1

N (
j

^G~v j !&5G1
1

2
Gvvgv,v , ~20!

U15Gv1
1

2
Gvvvgv,v , ~21!
where U0 expresses output spikes of the ensemble,v j
5u1 j , and arguments ofr, s, andt in the sums run from 1 to
K. The original KN-dimensional stochastic DEs are tran
formed to Neq-dimensional deterministic DEs, whereNeq
5K1K(K11)5K(K12).

B. Property of the DMA

In the preceding section, the DMA has been derived w
the use of equations of motions for moments. It is, howev
possible to alternatively derive the DMA from the conve
9-3
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HIDEO HASEGAWA PHYSICAL REVIEW E68, 041909 ~2003!
tional moment method with a reduction in numbers of va
ables, as was shown in I for FN neuron ensembles. In
pendix A, we present a derivation of the DMA from th
moment method for a general neuron ensemble under
sideration.

We should note that the noise contribution isb0
2 in Eq.

~17!, while it is @(1/N)b0
21(121/N)b1

2# in Eq. ~18!. When
model parameters ofb0 , b1 , w, andN are varied, the ratio
of rv,v /gv,v changes. In particular, in the case ofw50, we
get

rv,v

gv,v
5

1

N
1S 12

1

ND S b1

b0
D 2

~22!

5
1

N
for b150 ~23!

51 for b15b0 . ~24!

Equation~23! agrees with thecentral-limit theoremfor inde-
pendent noises, while Eq.~24! expresses the result for com
mon noises. On the other hand, in the opposite limit ofw
→`, we get rv,v /gv,v→1. The change in the ratio o
rv,v /gv,v reflects on the firing-time distributions and the d
gree of synchronization in neuron ensembles, as will be
cussed in the following.

Firing time distributions.The nth firing time of a given
neuron i in the ensemble is defined as the time when
membrane potentialv i(t) crosses the thresholdu from be-
low:

toin5$tuv i~ t !5u; v̇ i.0%. ~25!

The distribution of firing times oftoin of a given neuroni is
given by @17,21#

Z,~ t !;fS t2to*

dto,
D d

dt S mv

s,
DQ~ṁv!, ~26!

with the normal distribution function given by

f~x!5
1

A2p
expS 2

x2

2 D ~27!

and

dto,5
s,

ṁv

. ~28!

Here s,5Agv,v and ṁv5dmv /dt are evaluated att5to* ,
wheremv(to* )5u. In the limit of vanishingb, Eq. ~26! re-
duces to

Z,~ t !5d~ t2to* !. ~29!

Similarly we may define themth firing time relevant to
the global variableV(t)5(1/N)( iv i(t) as @21#

tgm5$tuV~ t !5u;V̇~ t !.0%. ~30!
04190
-
-

n-

s-

e

The distribution of firing times oftgm is given by

Zg~ t !5fS t2to*

dtog
D d

dt S m1

sg
DQ~ṁv!, ~31!

with

dtog5
sg

ṁv

, ~32!

wheresg5Arv,v. In particular, in the case of no coupling
we get

dtog

dto,
5A1

N
1S 12

1

ND S b1

b0
D 2

for w50. ~33!

Synchronous response.The synchronization ratiois de-
fined by @21#

S~ t !5
~rv,v /gv,v21/N!

~121/N!
5

zv,v

gv,v
, ~34!

with

zv,v5S 1

N21D ~Nrv,v2gv,v!

5
1

N~N21! (
i

(
j (Þ i )

^dv idv j&, ~35!

expressing the averaged covariance for the variable
($dv i%). S(t) changes as the model parameters ofb0 , b1 ,
w, andN are varied. It is easy to see from Eqs.~23! and~24!
that S50 ~the asynchronous state! for w50 and b1!b0,
while S51 ~the completely synchronous state! for w@b0

2 or
b15b0. In particular, forw50, we get

S~ t !5S b1

b0
D 2

for w50, ~36!

which implies that the synchronization is induced by co
mon noises.

III. DMA FOR HH NEURON ENSEMBLES

Equation of motions

For the HH neuron model (K54), F (p) in Eq. ~1! is given
by @1,23#

F (1)5F (v)~v i ,mi ,hi ,ni !

52
1

C
@gNami

3hi~v i2vNa!1gKni
4~v i2vK!

1gL~v i2vL!#, ~37!

F (p)5F (up)~v i ,upi!

52@aup
~v i !1bup

~v i !#upi1aup
~v i ! ~p52 –4!.

~38!
9-4
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DYNAMICAL MEAN-FIELD THEORY OF NOISY . . . PHYSICAL REVIEW E68, 041909 ~2003!
In Eqs. ~37! and ~38!, u1i5v i expresses the membrane p
tential of a neuroni, andu2i5mi , u3i5hi , andu4i5ni de-
note gate variables of Na and K channels for whichaup

(v)

andbup
(v) (p52 –4) are given by

am~v !5
0.1~v140!

@12e2(v140)/10#
, ~39!

bm~v !54e2(v165)/18, ~40!

ah~v !50.07e2(v165)/20, ~41!

bh~v !5
1

@11e2(v135)/10#
, ~42!

an~v !5
0.01~v155!

@12e2(v155)/10#
, ~43!

bn~v !50.125e2(v165)/80. ~44!

In Eq. ~37!, the reversal potentials of Na, K channels a
leakage are vNa550 mV, vK5277 mV, and vL5
254.5 mV: the maximum values of corresponding cond
tances aregNa5120 mS/cm2, gK536 mS/cm2, and gL
50.3 mS/cm2; the capacitance of the membrane isC
51 mF/cm2. From functional forms forF (v) andF (up) given
by Eqs. ~37!–~44!, we get Fv,v

(v) 50,Fuq

(up)
5Fup

(up)dpq ,Fv,uq

(up)

5Fv,up

(up) dpq , and Fup ,uq

(up)
50. The number of nonvanishin

third-order derivatives is six forF (v) @Fvmm
(v) , Fvmh

(v) , Fvnn
(v) ,

Fmmm
(v) , Fnnn

(v) , andFmmh
(v) ] and two for eachF (up) (p52 –4)

@Fvvv
(up) andFvvup

(up) ] .

After some manipulations with Eqs.~16!–~18!, we get
DEs for means, variances, and covariances given by (p,q
52 –4)

dmv

dt
5F (v)1

1

2 (
p52

4

(
q52

4

Fupuq

(v) gup ,uq
1 (

p52

4

Fvup

(v) gv,up
1wU0

1K (e), ~45!

dmup

dt
5F (up)1

1

2
Fv,v

(up)gv,v1Fv,up

(up) gv,up
, ~46!

dgv,v

dt
52FFv

(v)gv,v1 (
p52

4

Fup

(v)gv,upG1b0
212wU1zv,v

1Xv,v , ~47!

dgv,up

dt
5~Fv

(v)1Fup

(up)
!gv,up

1 (
q52

4

Fuq

(v)guq ,up
1Fv

(up)gv,v

1wzv,up
1Xv,up

, ~48!
04190
-

dgup ,uq

dt
5~Fup

(up)
1Fuq

(uq)
!gup ,uq

1Fv
(up)gv,uq

1Fv
(uq)gv,up

1Xup ,uq
, ~49!

drv,v

dt
52FFv

(v)rv,v1 (
p52

4

Fup

(v)rv,upG1F 1

N
b0

21S 12
1

NDb1
2G

12wU1rv,v1Yv,v , ~50!

drv,up

dt
5~Fv

(v)1Fup

(up)
!rv,up

1 (
q52

4

Fuq

(v)ruq ,up
1Fv

(up)
rv,v

1wU1rv,up
1Yv,up

, ~51!

drup ,uq

dt
5~Fup

(up)
1Fuq

(uq)
!rup ,uq

1Fv
(up)

rv,uq
1Fv

(uq)
rv,up

1Yup ,uq
, ~52!

with

zup ,uq
5S 1

N21D ~Nrup ,uq
2gup ,uq

!, ~53!

U05
1

N (
j

^G~v j !&5G1
1

2
Gvvgv,v , ~54!

U15Gv1
1

2
Gvvvgv,v , ~55!

whereF (v), Fv
(v)5]F (v)/]v, etc., are evaluated at means

(mv ,mm ,mh ,mn). In Eqs. ~45!–~52!, Xv,v and Yv,v , etc.,
denote the contributions from the fourth-order terms, who
explicit expressions are given by Eqs.~B1!–~B6! in Appen-
dix B because they are rather lengthy. Although calculatio
of the fourth-order terms are rather tedious, they play imp
tant roles in stabilizing DEs. This is numerically demo
strated in Appendix B for the case ofN51.

The original 4N-dimensional stochastic DEs given b
Eqs.~37! and ~38! are transformed to 24-dimensional dete
ministic DEs given by Eqs.~45!–~52! with Eqs.~B1!–~B6!:
four means (mv , mm , mh , mn), ten moments for local vari-
ables (gv,v , gm,m , gh,h , gn,n , gv,m , gv,h , gv,n , gm,h ,
gh,n , gm,n), and ten moments for global variables (rv,v ,
rm,m , rh,h , rn,n , rv,m , rv,h , rv,n , rm,h , rh,n , rm,n).

In this section, the DMA for the HH model has bee
obtained by the method of equations of motions of mea
variances, and covariances of local and global variables.
may, however, derive it from the moment method, as m
tioned before. In Appendix C, DEs in the moment meth
are presented for HH model.

We expect that our DMA equations given by Eqs.~45!–
~52! and ~B1!–~B6! may show much variety depending o
model parameters such as the strength of white noise (b0 ,
b1) couplingsw, and the ensemble sizeN. In Sec. IV, we
will present some numerical DMA calculations, which a
9-5
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compared with results of direct simulations. The DMA equ
tions have been solved by the fourth-order Runge-Ku
method with a time step of 0.01 ms for the initial conditio
of mv5265.0, mm50.0528, mh50.597, mn50.317, and
gup ,uq

5rup ,uq
50 (up , uq5v, m, h, andn). Direct simula-

tions have been performed by solving 4N-dimensional DEs
given by Eqs.~37! and ~38! by using also the fourth-orde
Runge-Kutta method with a time step of 0.01 ms. Simulat
results are the average of 100 trials otherwise noticed.

IV. CALCULATED RESULTS OF HH NEURON
ENSEMBLES

A. Firing-time distribution

In the present study, we pay our attention to the respo
of the HH neuron ensembles to a single-spike input app
to all neurons in the ensemble, given by

K (e)~ t !5S I i

CDa~ t2t i !, ~56!

with the alpha function

a~ t !5S t

ts
De(12t/ts)Q~ t !, ~57!

whereQ(x)51 for x>0 and 0 otherwise,I i stands for the
magnitude of an input spike,C the membrane capacitanc
@Eq. ~37!#, t i the input time of a spike, andts (51 ms) the
time constant of synapses. We get the critical magnitude
I ic53.62mA/cm2, below which firings of neuron canno
take place without noises (b05b150). We have adopted
the value ofI i55 mA/ cm2 for a study of the response to
suprathreshold input. We express the coupling constantw by
w5J/C with J in units of mA/cm2. The time, voltage, cur-
rent, and noise intensity are hereafter expressed in unit
ms, mV, mA/cm2, and V/s, respectively, though they a
sometimes omitted for simplicity of our explanation. W
have adopted parameters ofu50 mV ande510 mV in the
sigmoid functionG(v) such that outputU0 is similar to the
result given by thea function @see Fig. 1~a!#. Adopted pa-
rameter values ofb0 , b1 , J andN will be explained shortly.

Figures 1~a!–1~c! show the time courses ofmv ,
s,(5Agv,v), andsg(5Arv,v), respectively, when a singl
spike is applied att5100 ms. Solid and dashed curves e
press the results of the DMA and direct simulations, resp
tively, which are calculated with parameters ofb050.1, b1
50, J50, andN5100. States of neurons in an ensemb
when an input spike is injected att5100 ms are randomize
because noises have been already added sincet50. We note
thatmv obtained by the DMA is in very good agreement wi
that obtained by simulations as shown in Fig. 1~a!, where an
external input ofK (e)(t) and an output ofU0(t) are also
plotted. Figures 1~b! and 1~c! show thats, andsg calculated
by the DMA are again in good agreement with those of sim
lations. We note that the relation given by Eq.~23!: sg /s,

5Arv,v /gv,v51/AN valid for w5J/C50, is supported in
our numerical calculations.
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Figure 2~a! showsZ, , the firing probability of local vari-
ables, which is calculated forb050.1, b150, J50, and
N5100. Firings occur att;103.6 ms with a delay of abou
3.6 ms. Fluctuations of firing times of local variable,dto, ,
are 0.066 ms in the DMA, while it is 0.069 ms in simulation
which is the root-mean-square~RMS! value of firing times
defined by Eq.~25!. In contrast, Fig. 2~b! showsZg , the
firing probability of global variables. Fluctuations of firin
times of global variabledtog are 0.0066 ms in the DMA and
it is 0.0083 ms in simulations, respectively. We note thatdtog
is much smaller thandto, @Eq. ~33!#.

Noise-strength dependence.When the noise strength i
increased, the distribution of membrane potentials is wid
and fluctuations of firing times are increased, as was
cussed in Sec. II B. Filled squares in Fig. 3~a! show theb0
dependence ofdto, obtained by the DMA theory withb1
50, J50, and N5100, while open squares express t
RMS value of firing times obtained by simulations. Th
agreement between the two methods is fairly good

FIG. 1. Time courses of~a! mv , ~b! s, (5Agv,v), and ~c! sg

(5Arv,v) for b050.1, b150, J50 andN5100, K (e), andU0 in
~a! being shown in arbitrary units.

FIG. 2. Time courses of~a! Z, and ~b! Zg for b050.1, b1

50, J50, andN5100. Note the enlarged scale of abscissa co
pared to that of Fig. 1.
9-6
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b0,0.1 but becomes worse forb.0.1. In contrast, filled
circles in Fig. 3~a! show theb0 dependence ofdtog relevant
to the global variable obtained by the DMA theory and op
circles stand for RMS values of firing times in simulation
We note thatdtog is much smaller thandto, becausedtog

5dto, /AN @Eq. ~33!#.
As b1 is increased for a fixedb0, the contribution from

common noises increases while that from independent no
decreases (bC5b1 , b I5Ab0

22b1
2). The b1 dependence o

firing-time fluctuations is shown in Fig. 3~b!. Filled squares
and circles denote the results ofto, and tog , respectively,
obtained by the DMA, and open squares and circles thos
simulations. Figure 3~b! shows thatdtog is almost linearly
increased asb1 is increased, whiledto, remains constant. In
the limit of b15b050.1, for which only common noises ar
applied (bC50.1 andb I50), we getdtog5dto, , which
shows that common noises do not work to reduce glo
fluctuations.

Ensemble-size dependence.Filled squares in Fig. 4~a!
show theN dependence ofdto, relevant to local fluctuations

FIG. 3. ~a! The b0 dependence and~b! the b1 dependence of
dto, ~squares! anddtog ~circles! for b150 in ~a! andb050.1 in ~b!
with J50 andN5100, filled symbols denoting results in the DM
and open symbols those in simulations.

FIG. 4. Log-log plots ofdto, ~squares! anddtog ~circles! against
N for ~a! b150 and ~b! b150.05 with b050.1 andJ50, filled
symbols denoting results in the DMA and open symbols those
simulations.
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for b050.1, b150, andJ50, obtained by the DMA theory
while open squares express that obtained by simulations
note thatdto, is independent ofN because of no coupling
(J50). In contrast,dtog relevant to global fluctuations in
versely decreases when the sizeN is increased, as shown b
filled and open circles which are obtained by the DM
theory and simulations, respectively. The relationdtog

}(1/AN) holds as given by Eq.~33! for b150. Figure 4~b!
shows a similar plot for a finite value ofb150.05 with b0
50.1 andJ50. In the limit ofN→`, the ratio ofdtog /dto,

approaches a finite value ofb1 /b050.5 @Eq. ~33!#.
Coupling-strength dependence.So far we have neglecte

the coupling ofJ, which is now introduced. Filled squares
Fig. 5~a! show theJ dependence ofdto, calculated by the
DMA theory for b050.1, b150, andN5100, while open
squares that obtained by simulations. Filled and open cir
expressdtog in the DMA theory and simulations, respec
tively. We note thatdto, is much reduced asJ is increased
although there is little change indtog . Figure 5~b! shows a
similar plot of theJ dependence of firing time accuracy fo
finite b150.05 withb050.1 andN5100. Again a reduction
in dto, with increasingJ is more significant than that indog .

B. Synchronization ratio

One of the important effects of the couplings is to yie
synchronous firings in ensemble neurons. Figures 6~a! and
6~b! show the time course of the synchronization ratioS(t)
for J5100 and 200mA/cm2, respectively, withb050.1,
b150, andN5100: solid and dashed curves denote the
sults of the DMA and simulations, respectively. Fairly lar
fluctuations in simulation results are due to a lack of tr
number of 100, which is the limit of our computer facility.
comparison between Figs. 6~a! and 6~b! shows thatS(t) is
increased asJ is increased: the maximum value ofS(t) in
Fig. 6~b! is Smax50.019 which is larger thanSmax50.007 in
Fig. 6~b!. Figure 6~c! shows the time course ofS(t) for a
finite b150.05 with b050.1, J5100, andN5100. A sig-
nificant increase inS is realized at 100&t&120 ms which is
induced by an applied spike@note the difference in vertica

in

FIG. 5. TheJ dependence ofdto, ~squares! and dtog ~circles!
for ~a! b150 and ~b! b150.05 with b050.1 andN5100, filled
symbols denoting results in the DMA and open symbols those
simulations.
9-7
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scales of Figs. 6~a!–6~c!#. We note a fairly large value ofS
50.25 even without an applied input spike att&100 or t
*120. This expresses the synchronization among the m
brane potentials of ensemble neurons induced by ad
noises although they do not induce firings. In order to dis
guish the synchronization with firings from that without fi
ings, we define the firing-induced synchronization rat
S8(t), given by

S8~ t !5S~ t !2Sb , ~58!

where Sb5(b1 /b0)2 denotes thebackgroundsynchroniza-
tion induced by noises only@Eq. ~36!#. We get Smax

50.369, Smax8 50.119, andSb50.25 in Fig. 6~c!. From a
comparison of Fig. 6~c! with Fig. 6~a!, we note thatS8(t) is
also much increased by common noises.

An increase inS(t) by an increase ofJ is clearly shown in
Fig. 7~a!, where the maximum ofS(t) (Smax) is plotted as a
function of J. A disagreement between results of the DM
and simulations forJ,50 is due to fluctuations in simula
tions because of insufficient trial number as mention
above. The dependence ofSmax on the sizeN is shown in
Fig. 7~b!, whereb050.1, b150, andJ5100. Smax is de-
creased with increasingN. Figure 7~c! expresses theb0 de-
pendence ofSmax for b150.05, J5100 andN5100. At
b05b150.05, we getSmax51, which is decreased as in
creasingb0. Filled squares in Fig. 7~c! denoteSmax8 , which
shows the maximum aroundb0;0.08. In contrast, Fig. 7~d!
show theb1 dependence ofSmax for b050.1, J5100 and

FIG. 6. The time course of synchronization ratioS for ~a! b0

50.1, b150, andJ5100, ~b! b050.1, b150, andJ5200, and
~c! b050.1, b150.05, andJ5100 with N5100, the solid curve
denoting results of the DMA and the dashed curve those of si
lations.
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N5100. Smax is increased with increasingb1, and ap-
proaches unity asb1→b0(50.1). We note thatSmax8 has the
maximum atb1;0.07.

V. CONCLUSIONS AND DISCUSSION

In the preceding section, we have reported DMA calcu
tions for a single spike input to HH neuron ensembles. DM
calculations and simulations have shown that~a! dto, in-
creases with increasingb0, or decreasingJ, independently of
b1 andN; ~b! dtog increases with increasingb0 or b1, and
decreasingN or J; and~c! Smax increases with increasingb1
or J, or decreasingb0 or N.

In order to understand these behaviors, we have tried
obtain phenomenological, analytical expressions fordto, ,
dtog , andSmax as functions ofb0 , b1 , J, andN. For small
J, we expressgv,v and rv,v in a power series ofJ at t5to*
where neurons fire, given by~see Appendix E of I@34#!

gv,v}b0
2~12a1J1••• !, ~59!

rv,v}b0
2F 1

N
1S 12

1

ND S b1

b0
D 2

2S b1

N D J1•••G . ~60!

It is noted that in the limit ofJ50 (w50), Eqs.~59! and
~60! reduce to Eq.~22!. Substituting Eqs.~59! and ~60! into
Eqs.~28! and ~32!, we get

dto,}b0S 12
1

2
a1JD , ~61!

u-

FIG. 7. The dependence of the maximum of the synchroniza
ratio on ~a! J, ~b! N, ~c! b0, and ~d! b1; filled and open circles
denoteSmax of the DMA and simulations, respectively, and fille
squares expressSmax8 of the DMA ~see text!.
9-8
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dtog}b0F X1

N
1S 12

1

ND S b1

b0
D 2C1/2

2S b1

2AN
D JG . ~62!

Equations~61! and ~62! may explain the behavior ofdto,

anddtog in points ~a! and ~b! mentioned above.
Next we will obtain the analytical expression forSmax.

For smallJ, we getgv,v and rv,v in a power series ofJ at
t5to

(m) , whereS(t) takes the maximum value, given by~see
Appendix E of I @34#!

gv,v}b0
2~12a2J1••• !, ~63!

rv,v}b0
2F 1

N
1S 12

1

ND S b1

b0
D 2

2S b2

N D J1•••G . ~64!

Substituting Eqs.~63! and ~64! into Eq. ~34!, we get

Smax5S b1

b0
D 2

1Fb1S b1

b0
D 2

1S a22b2

N21 D GJ1•••. ~65!

Equation~65! is consistent with the point~c!: Smax increases
with increasingb1 andJ, or decreasingb0 andN. Equation
~65! shows that in the case ofb150, Smax is independent of
b0, which is supported in the DMA calculation and simul
tions ~not shown!. Expressions given by Eqs.~61!, ~62!, and
~65! are useful in a phenomenological sense. In princip
expressions as given by Eqs.~59! and ~60! may be derived
from DMA equations given by Eqs.~45!–~52!, although we
have not unfortunately succeeded in getting them becaus
their complexity.

Numerical calculations in Sec. IV have been made for
response to a single-spike input. The DMA is, however,
plicable to arbitrary inputs. This will be demonstrated
adding spike trains to HH neuron ensembles, given by

K (e)~ t !5S I i

CD(
n

a~ t2t in!, ~66!

wheret in expresses thenth input time. Figures 8~a! and 8~b!
show the time courses ofmv ands, (5Agv,v), respectively,
for Poisson spike trains with the average interspike inter
~ISI! of 25 ms; solid and dashed curves express results o
DMA and simulations, respectively, forb050.1, b150, J
50, andN5100. The time course ofmv of the DMA is in
good agreement with that of simulations. A comparison
tween the inputK (e) and outputU0 shows that when the IS
of input is shorter than about 10 ms, HH neurons can
respond because of the refractory period@23#. Figures 8~b!
shows thats, of the DMA is also in good agreement wit
that of simulations.

To summarize, the DMA theory previously proposed f
FN neuron ensemble in I has been generalized to an
semble described byKN-dimensional stochastic DEs, whic
has been replaced byK(K12)-dimensional deterministic
DEs expressed by means and second-order moments: c
butions from the fourth-order moments are taken in acco
by the Gaussian decoupling approximation. The DMA h
been applied to HH neuron ensembles, for which we
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24-dimensional deterministic DEs. We have studied effe
of noise, the coupling strength, and the ensemble size on
firing-time precision and the firing synchronization fo
single-spike inputs, obtaining the following results:~i! the
firing-time accuracy of the order of one-tenth ms is possi
in a large-scale HH neuron ensemble, even without c
plings; ~ii ! the spike transmission is improved with the sy
chronous response by increasing the coupling strength;
~iii ! the synchronization is increased by common noises
decreased by independent noises.

Results~i! and ~ii ! are consistent with the SR results
HH neuron ensembles@28–33#. Although they are quite
similar to the case of FN model discussed in I, theirquanti-
tative discussions are possible with the use of the reali
HH model. Result~iii ! agrees with the result of Ref.@31# for
SR in HH neuron ensembles subject of common and in
pendent noises.

Our calculations have demonstrated the feasibility of
DMA, whose advantages may be summarized as follows:~1!
because of the semianalytical nature of the DMA, some
sults may be derived without numerical calculations;~2! the
DMA is free from the weak-coupling constraint although
assumes weak noises;~3! a tractable small number of DE
makes calculations feasible for large-scale neuron ensem
with a fairly short computational time;~4! the DMA may be
applicable to ensembles with fluctuations not only due
noises but also due to some inhomogeneities in model
rameters; and~5! the DMA can be applied to more gener
stochastic systems besides neuron models.

As for point ~3!, we may indicate that, for example, th
CPU time of DMA calculations for a 200 ms time course

FIG. 8. Time courses of~a! mv and ~b! gv,v for Poisson spike
inputs with the average ISI of 25 ms forb050.1, b150, J50, and
N5100, solid and dashed curves in~a! denoting results of the
DMA and simulations, respectively.K (e) andUo in ~a! are plotted
in arbitrary units. The result of simulations in~b! is shifted upwards
by 30.
9-9
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HIDEO HASEGAWA PHYSICAL REVIEW E68, 041909 ~2003!
a N5100 HH neuron ensemble with the use of 1.8-GHz
is 2 s, which is about 2500 times faster than the CPU time
85 min (;5000 s) for direct simulations with 100 trials. It i
necessary to stress the importance of the fourth-order co
butions in stabilizing solutions of the DMA, which is nu
merically demonstrated in Appendix B. Although expre
sions for the fourth-order contributions are lengthy, we
much benefited from them once they are derived and pla
into computer programs@39#. We are now under conside
ation to incorporate the time delay in the coupling terms
Eq. ~1!, with which the HH neuron ensemble may show t
intriguing behavior like chaos. Such calculations will be r
ported in a separate paper.
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APPENDIX A: DERIVATION OF THE DMA FROM THE
MOMENT METHOD FOR GENERAL NEURON

ENSEMBLES

In the moment method, we define the means, varian
and covariances given by@17#

mup

i 5^upi&, ~A1!

Cup ,uq

i , j 5^DupiDuq j&, ~A2!

whereDupi5upi2mup

i . Assuming the weak couplings an

adopting the Gaussian decoupling approximations for
fourth-order moments, we get DEs for general neuron
sembles described by Eqs.~1! and ~2!:

dmup

i

dt
5F (up)1

1

2 (
q

(
r

Fuqi ,uri

(up) Cuq ,ur

( i ,i )

1dp1F S w

N21D (
k(Þ i )

S G1
1

2
Gu1ku1k

Cu1 ,u1

k,k D1K (e)G ,
~A3!

dCup ,uq

i , j

dt
5(

r
@Furi

(up)Cuq ,ur

i , j 1Fur j

(uq)Cup ,ur

i , j #1@b0
2d i j 1b1

2

3~12d i j !#dp1dq11dp1S w

N21D (
k(Þ i )

Gu1k
Cuq ,u1

j ,k

1dq1S w

N21D (
k(Þ j )

Gu1k
Cup ,u1

i ,k

1
1

6 (
r

(
s

(
t

@Furi usiuti

(up)
~Cur ,us

i ,i Cut ,uq

i , j
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1Cur ,ut

i ,i Cus ,uq

i , j 1Cus ,ut

i ,i Cur ,uq

i , j !

1Fur j us jut j

(uq)
~Cur ,us

j , j Cut ,up

j ,i 1Cur ,ut

j , j Cus ,up

j ,i

1Cus ,ut

j , j Cur ,up

j ,i !#, ~A4!

where F (up)5F (p), Furi

(up)
5]F (p)/]uri , and Furi usiuti

(p)

5] (3)F (p)/]uri ]usi]uti are evaluated for the means o
($mup

i %), and the last term in Eq.~A4! denotes the fourth-

order contribution. The number of DEs isNeq5KN
1(1/2)KN(KN11)5(1/2)KN(KN13).

In order to derive the DMA from the moment method, w
define the quantities given by

m̄k5
1

N (
i

mk
i , ~A5!

ḡk,l5
1

N (
i

Ck,l
i ,i 1dk,l , ~A6!

r̄k,l5
1

N2 (
i

(
j

Ck,l
i , j ~k,l5up ,uq!, ~A7!

where

dk,l5
1

N (
i

dmk
i dml

i , ~A8!

dmk
i 5mk

i 2mk . ~A9!

We may show that Eqs.~A3! and~A4! with Eqs.~A5!–~A7!

yield Eqs. ~16!–~18!: m̄k5mk , ḡk,l5gk,l , and r̄k,l
5rk,l . Then the moment method yields the same results
the DMA as far as the averaged quantities are concerned~see
also Appendix B of I!.

APPENDIX B: THE FOURTH-ORDER CONTRIBUTIONS
IN THE DMA FOR HH NEURON ENSEMBLES

The fourth-order contributions given byXk,l and Yk,l
(k,l5v,up) in Eqs.~45!–~52! are expressed by

Xv,v5Fvmm
(v) ~gv,vgm,m12gv,mgv,m!1Fvmh

(v) ~gv,vgm,h

12gv,mgv,h!1Fvnn
(v) ~gv,vgn,n12gv,ngv,n!

1Fmmm
(v) gv,mgm,m1Fnnn

(v) gv,ngn,n1Fmmh
(v) ~gv,hgm,m

12gv,mgm,h!, ~B1!

Xv,up
5

1

2
@Fvmm

(v) ~gv,up
gm,m12gup ,mgv,m!1Fvmh

(v) ~gv,up
gm,h

1gup ,mgv,h1gup ,hgv,m!1Fvnn
(v) ~gv,up

gn,n

12gup ,ngv,n!1Fmmm
(v) gup ,mgm,m1Fnnn

(v) gup ,ngn,n
9-10
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1Fmmh
(v) ~gup ,hgm,m12gup ,mgm,h!1Fvvv

(up)gv,vgv,v

1Fvvup

(up)
~gv,up

gv,v12rv,vgv,up
!#, ~B2!

Xup ,uq
5

1

2
@Fvvv

(up)gv,uq
gv,v1Fvvv

(uq)gv,up
gv,v1~Fvvup

(up)
1Fvvuq

(uq)
!

3~gup ,uq
gv,v12gv,uq

gv,up
!#, ~B3!

Yv,v5Fvmm
(v) ~rv,vgm,m12rv,mgv,m!1Fvmh

(v) ~rv,vgm,h

1rv,mgv,h1rv,hgv,m!1Fvnn
(v) ~rv,vgn,n12rv,ngv,n!

1Fmmm
(v) rv,mgm,m1Fnnn

(v) rv,ngn,n1Fmmh
(v) ~rv,hgm,m

12rv,mgm,h!, ~B4!

Yv,up
5

1

2
@Fvmm

(v) ~rv,up
gm,m12rup ,mgv,m!1Fvmh

(v) ~rv,up
gm,h

1rup ,mgv,h1rup ,hgv,m!1Fvnn
(v) ~rv,up

gn,n

12rup ,ngv,n!1Fmmm
(v) rup ,mgm,m1Fnnn

(v) rup ,ngn,n

1Fmmh
(v) ~rup ,hgm,m12rup ,mgm,h!1Fvvv

(up)
rv,vgv,v

1Fvvup

(up)
~gv,up

gv,v12rv,vgv,up
!#, ~B5!

Yup ,uq
5

1

2
@Fvvv

(up)
rv,uq

gv,v1Fvvup

(up)
~rup ,uq

gv,v12rv,uq
gv,up

!

1Fvvv
(uq)

rv,up
gv,v1Fvvuq

(uq)
~rup ,uq

gv,v

12rv,up
gv,uq

!#, ~B6!

where Fvmh
(v) 5]3F (v)/]v]m]h, etc. Although calculations

and computer programming of fourth-order contributio
given by Eqs.~B1!–~B6! are rather tedious, they play impo
tant roles in stabilizing the solution of DEs@39#.

Here we demonstrate the importance of the fourth-or
contributions in the case of a single HH neuron (N51) for
which w50, gk,l5rk,l , andXk,l5Yk,l in Eqs.~45!–~52!
and~B1!–~B6!. Figure 9~a! shows the time course ofmv for
b050.1 and b150 when the constant input ofI i
510 mA/cm2 is applied att50 ms. The solid and dashe
curves express the results of the DMA and the simulat
~100 trials!, respectively. The dotted curve denotes the re
of the DMA2 ~the second-order DMA! in which the fourth-
order contributions are neglected (Xk,l5Yk,l50). For t
,60 ms, all results seem to be in good agreement. At
*60, however, the solution of the DMA2 becomes unsta
and significantly deviates from those of DMA and the sim
lation. From the time course ofs,5Agv,v shown in Fig.
9~b!, we note that such deviation of the DMA2 already sta
from t;30 ms. The solution of the DMA2 is stable atb
<0.037 for the constant current ofI i510 mA/cm2.
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Figures 10~a! and 10~b! show the time courses ofmv and
s, for b050.2 andb150 when we apply the periodic spik
train input given by Eq.~66! with I i55 mA/cm2 and a con-
stant ISI of 25 ms. Figure 10~b! clearly shows that the resu
of the DMA2 deviates from those of the DMA and simul
tions from the first spike-input, and that the result of t
DMA2 diverges at the second spike input. The solution
the DMA2 is stable only atb<0.178 for this periodic
spike.

APPENDIX C: THE MOMENT METHOD FOR HH
NEURON ENSEMBLES

We will derive DEs in the moment method for HH neuro
ensembles, defining the means, variances, and covaria
given by @17#

mv
i 5^v i&, ~C1!

mup

i 5^upi&, ~C2!

Cv,v
i , j 5^Dv iDv j&, ~C3!

Cv,up

i , j 5^Dv iDupi&, ~C4!

Cup ,uq

i , j 5^DupiDuq j&, ~C5!

where Dv i5v i2mv
i and Dupi5upi2mup

i . Adopting the

FIG. 9. Time courses of~a! mv and ~b! s,(5Agv,v) with b0

50.1, b150, andN51 for constant current input ofI i520, solid,
dotted, and dashed curves denoting results of the DMA, DMA2~the
second-order DMA!, and simulations, respectively. A constant inp
current is shown at the bottom of~a! ~see text!.
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weak-coupling approximation and the Gaussian approxi
tion for the fourth-order terms, we get DEs given by

dmv
i

dt
5F (v i )1

1

2 (
p52

4

(
q52

4

Fup ,uq

(v i ) Cup ,uq

i ,i 1 (
p52

4

Fv,u
(v i )Cv,up

i ,i

1S w

N21D (
k(Þ i )

S G(vk)1
1

2
Gvv

(vk)Cv,v
k,k D1K (e)~ t !,

~C6!

dmup

i

dt
5F (upi)1

1

2
Fv,v

(upi)Cv,v
i ,i 1Fv,up

(upi)Cv,up

i ,i , ~C7!

dCv,v
i , j

dt
52Fv

(v i )Cv,v
i , j 1 (

p52

4

Fup

(v i )~Cv,up

i , j 1Cv,up

j ,i !

1@b0
2d i j 1b1

2~12d i j !#1S w

N21D F (
k(Þ i )

Gv
(vk)Cv,v

j ,k

1 (
k(Þ j )

Gv
(vk)Cv,v

i ,k G1Zv,v
i , j , ~C8!

dCv,up

i , j

dt
5~Fv

(v i )1Fup

(upi)!Cv,up

i , j 1 (
q52

4

Fuq

(v i )Cuq ,up

i , j 1Fv
(upi)Cv,v

i , j

1S w

N21D (
k(Þ i )

Gv
(vk)Cv,up

k, j 1Zv,up

i , j , ~C9!

FIG. 10. Time courses of~a! mv and ~b! s,(5Agv,v) with b0

50.2, b150 andN51 for a periodic spike train input with an IS
of 25 ms; solid, dotted, and dashed curves denoting results o
DMA, the DMA2 ~the second-order DMA!, and simulations, re-
spectively. A periodic input spike is shown at the bottom of~a! ~see
text!.
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dCup ,uq

i , j

dt
5~Fup

(upi)Cuq ,up

i , j 1Fuq

(uqi)Cup ,uq

i , j !1Fv
(upi)Cv,uq

i , j

1Fv
(uqi)Cv,up

j ,i 1Zup ,uq

i , j , ~C10!

with

Zv,v
i , j 5

1

2
@Fvmm

(v) ~Cv,v
i , j Cm,m

j , j 12Cv,m
i , j Cv,m

j , j 1Cv,v
i , j Cm,m

i ,i

12Cv,m
j ,i Cv,m

i , j !1Fvmh
(v) ~Cv,v

i , j Cm,h
j , j 1Cv,m

i , j Cv,h
j , j

1Cv,h
i , j Cv,m

j , j 1Cv,v
i , j Cm,h

i ,i 1Cv,m
j ,i Cv,h

i ,i 1Cv,h
j ,i Cv,m

i ,i !

1Fvnn
(v) ~Cv,v

i , j Cn,n
j , j 12Cv,n

i , j Cv,n
j , j 1Cv,v

i , j Cn,n
i ,i 12Cv,n

j ,i Cv,n
i ,i !

1Fmmm
(v) ~Cv,m

i , j Cm,m
j , j 1Cv,m

j ,i Cm,m
i ,i !1Fnnn

(v) ~Cv,n
i , j Cn,n

j , j

1Cv,n
j ,i Cn,n

i ,i !1Fmmh
(v) ~Cv,h

i , j Cm,m
j , j 12Cv,m

i , j Cm,h
j , j

1Cv,h
j ,i Cm,m

i ,i 12Cv,m
j ,i Cm,h

i ,i !#, ~C11!

Zv,up

i , j 5
1

2
@Fvmm

(v) ~Cv,up

i , j Cm,m
i ,i 12Cm,up

i , j Cv,m
i ,i !

1Fvmh
(v) ~Cv,up

i , j Cm,h
i ,i 1Cm,up

i , j Cv,h
i ,i 1Ch,up

i , j Cv,m
i ,i !

1Fvnn
(v) ~Cv,up

i , j Cn,n
i ,i 12Cn,up

i , j Cv,n
i ,i !1Fmmm

(v) Cm,up

i , j Cm,m
i ,i

1Fnnn
(v) Cn,up

i , j Cn,n
i ,i 1Fmmh

(v) ~Ch,up

i , j Cm,m
i ,i 12Cm,up

i , j Cm,h
i ,i !

1Fvvv
(up)Cv,v

i , j Cv,v
j , j 1Fvvup

(up)
~Cv,up

i , j Cv,v
j , j 12Cv,v

i , j Cv,up

j , j !#,

~C12!

Zup ,uq

i , j 5
1

2
@Fvvv

(up)Cv,uq

i , j Vv,v
i ,i 1Fvvup

(up)
~Cup ,uq

i , j Cv,v
i ,i

12Cv,uq

i , j Cv,up

i ,i !1Fvvv
(uq)Cup ,v

i , j Cv,v
j , j

1Fvvuq

(uq)
~Cup ,uq

i , j Cv,v
j , j 12Cup ,v

i , j Cv,uq

j , j !#, ~C13!

where F (v i ), Fv
(v i )5]F/]v i , and Fv,up

(v i ) 5]2F/]v i]upi are

evaluated for the averages of (mv
i ,$mup

i %), and similar de-

rivatives forF (upi) andG(vk). Equations given by Eqs.~C6!–
~C13! denote the result of the fourth-order moment meth
The second-order moment method was applied to a sin
HH neuron by RT@19,20#, whose result is given by Eqs
~C6!–~C10! when we seti 5 j 51, w50, b150, andZv,v
5Zv,up

5Zup ,uq
50. Equations~C6!–~C13! lead to the DMA

equation given by Eqs.~45!–~52! and~B1!–~B6! if we adopt
the relations as given by Eqs.~A5!–~A7!. In particular, in the
case ofN51, Eqs.~C6!–~C13! are identical with Eqs.~45!–
~52! and ~B1!–~B6! of the DMA if we readmk

15mk , Ck,l
1,1

5gk,l5rk,l , andZk,l
1,1 5Xk,l5Yk,l .

he
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