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Dynamical mean-field theory of noisy spiking neuron ensembles:
Application to the Hodgkin-Huxley model
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A dynamical mean-field approximatiai®MA) previously proposed by the present authidr Hasegawa,
Phys. Rev B67, 041903(2003] has been extended to ensembles described by a general noisy spiking neuron
model. Ensembles dfl-unit neurons, each of which is expressed by coupletimensional differential equa-
tions (DEs), are assumed to be subject to spatially correlated white noises. The ofigitadimensional
stochasticDEs have been replaced by K + 2)-dimensionadeterministicDEs expressed in terms of means
and the second-order moments lo€al and global variables: the fourth-order contributions are taken into
account by the Gaussian decoupling approximation. Our DMA has been applied to an ensemble of Hodgkin-
Huxley (HH) neurons K=4), for which effects of the noise, the coupling strength, and the ensemble size on
the response to a single-spike input have been investigated. Numerical results calculated by the DMA theory
are in good agreement with those obtained by direct simulations, although the former computation is about a
thousand times faster than the latter for a typical HH neuron ensembleNwith00.
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[. INTRODUCTION sembles is described by the population activity. Although the
FPE is the powerful method formally applicable to the case
It is well known that a small cluster of cortex may contain of arbitraryK andN [13], actual calculations have been made
thousands of similar neurons. Each neuron, which receivesostly forN=«~ ensembles of & =1 model with the use of
spikes from hundreds of other neurons, generates spikéhe mean-field and/or diffusion approximatidrist]. Similar
propagating along the axon towards synapses exciting neyopulation density approaches have been recently developed
rons in the next stage. Dynamics of an individual neuronfor large-scale neuronal clusterfsl5,16. The moment
with voltage-dependent ionic channels can be described byethod initiated by Rodriguez and TuckwéRT) has been
the Hodgkin-Huxley-type(HH) model [1], or by reduced, applied to single FN17,18 and HH neuron$19,20. When
simplified neuron models such as integrate-and-{if§, = the moment method is applied to a single neuron model with
FitzHugh-Nagumo(FN) [2,3], and Hindmarsh-RoséHR) K variables,K-dimensional stochastic DEs are replaced by
models[4]. Although the response of a single neuinrvitro (1/2)K(K+3)-dimensional deterministic DEs. When the
is rather accurate, that wivo is not reliable[5]. This is due  moment method is applied té-unit neuron ensembles under
to noisy environment in living brains, where various kinds of consideration K N-dimensional stochastic DEs are replaced
noises are reported to be ubiquitolier a review see Ref. by N.-dimensional deterministic DEs whereN,
[6]). In recent years, the population of neuron ensembles has (1/2)KN(KN+3) [17]. For example, in the case df
been recognized to play important roles in the information=2 (FN mode), the number of equations iBleq=230,
transmissior(pooling effect[7—-12]. Then it is necessary for 20300, and 2003000 foN=10, 100, and 1000, respec-
us to theoretically investigate high-dimensional, stochastigively. In the case oK=4 (HH mode), we getN,,=860,
differential equationg¢DEs) describing the large-scale noisy 80600, and 8006 000 foN=10, 100, and 1000, respec-
neuron ensemble. In order to make our discussion concretévely. These figures are too large for us to make simulations
let us consider ensembles consisting\siinit neurons, each for realistic neuron clusters. In their subsequent paper of RT
of which is described byK-dimensional coupled DEs: for [19], they transplanted the result of the moment method for
example K=1, 2, 3, and 4 for IF, FN, HR, and HH neuron HH neuron ensembles to FPE-type equation which has not
models, respectively. Dynamics of such neuron ensembleseen solved yet.
expressed byKN-dimensionalstochasticDEs, has been so In a previous studyRef.[21] is hereafter referred to aj |
far investigated with the use of the two approactigsdirect  the present author proposed a semianalytical dynamical
simulations andii) analytical methods, such as the Fokker-mean-field approximatiofDMA), in which equations of
Planck equatiorfFPE and the moment method. Simulations motions for means, variances, and covariance®adl and
have been made for large-scale networks mostly consistinglobal variables were derived foN-unit FN neuron en-
of IF neurons. Since the CPU time to simulate networks bysemble. The original R-dimensional stochastic DEs are re-
conventional methods is proportional 7, it is rather dif-  placed by eight-dimensional deterministic DB¢.,=8 is
ficult to simulate realistic neuron clusters in spite of recentmuch smaller than corresponding figures in the moment
computer development. In the FPE dynamics of neuron enmethod mentioned above. The DMA calculations in | on the
spiking-time precision and the synchronization in FN neuron
ensembles are in good agreement with direct simulations.
*Email address: hasegawa@u-gakugei.ac.jp The feasibility of the DMA has been demonstrated in |I.
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The purpose of the present paper is twofold. The first (&(1))=0, ®)
purpose is to extend the DMA of | to general neuron en-
sembles subject to white noises described by (DEMN =T 828+ BA1—8)18(t—1t'
K N-dimensional stochastic DEs, which will be replaced by (608 ))=[Bodi + Fi(1= o) ]oCt=t')
K(K+2)-dimensional deterministic DEs. The second pur- =(Ba+ B ;) 8(t—t"), (4

pose of the present paper is to apply the generalized DMA to

an ensemble of HH neurons, which is more realistic than thgyhere g.= g, and 8,= /82— 82 denote the magnitudes of
FN neuron model previously studi_ed in 1. Since Hodgki_n andsommon and independent noises, respectively, and the
Huxley proposed the HH model in 1932], many studies pracket( ) expresses the stochastic averf@@l; the case of
have been intensively made on properties of the HH modelﬁlzo (B1=,) stands for independeritommon noises
Responses of a single, pairs, and ensembles HH neuropg,,,

mostly to direct and sinusoidal currents have been investi- |, order to derive DEs in the DMA theory, we first define

gated. In recent years, responses of HH neurons to spikegre global variables for the ensemble [34]
train inputs have been studi¢@2—25. The stochastic reso-

nance(SR) of HH neurons for sinusoidal and spike inputs 1
with various kinds of added noises has been investigated Up(t)=N 2 Upi(t), (5)
[26—33. These studies have shown that noise can play a :
constructive role in signal transmission against our conven- )
tional wisdom. In most studies on SR, however, noises adde@nd their averages by
to ensemble neurons are considered to be independent of
each other. Quite recently effects of spatially correlated Mp(t)zﬂup(t):<up(t)>- (6)
noises on SR have been investigafdd], which shows that
although common noises work to enhance the synchronizédeviations from these averages of local variables are given
tion in neuron ensembles, they are not effective for SR, irby
contrast to independent noises. We will adopt in this study,
spatially correlated white noises in order to clarify respective dupi(t)= upi(t)—,uup(t), @)
effects of common and independent noises on the response
of ensemble neurons. and those of global variables given by
The paper is organized as follows. In Sec. I, we extend
':?;\al DMA thepry to general neuron ensembl_es described by U (1) =U (1) — sy (1). @)
stochastic DEs. Our DMA theory is applied to HH neu- P
ron ensembles in Sec. lll. Some numerical results on HH

neuron ensembles are presented in Sec. IV. Conclusions and N€Xt we define the variances and covariances between
discussions are given in Sec. V. local variables given byargumentt is neglected hereafter

1
Il. DMA FOR A GENERAL NEURON ENSEMBLE Yo.a= Yu, '“q:N Z <5upi5uqi>, 9
A. Equation of motions

We assume an ensemble {unit neurons =2), each and those between global variables given by
of which is described bK-dimensional nonlinear differen-
tial equationsDEs). Dynamics of a given neuron ensemble pp,q:pup,uq:<5up5Uq>- (10
is expressed by

W It is noted thaty, , expresses fluctuations in local vari-
m)}_;i) Gvj(1)+KE() + (1), ables, whilep,,  those in global variables.
(1) We assume that the noise intensity is weak and that the
distribution functionp(z) for KN-dimensional random vari-
dupi EO((u)) (p=2K ables ofz= ({up}) is given by the Gaussian distributior_1 con-
dt qi p= ), (2)  centrated near the mean pointmf ({,uup}) [36]. Numerical

simulations have shown that for weak noises, the distribution
wherev;=uy; with p=1 denotes the membrane potential of of v(t) of the membrane potential of a single HH neuron
a neuroni (=1-N), u,; with p=2-K stands for auxiliary nearly obeys the Gaussian distribution, although for strong
variables andrF( is functions of {uqi}). The synaptic- noises, the distribution of(t) deviates from the Gaussian,
coupling strengthw is assumed to be consta@(v)=1/1  taking a bimodal form[22,37. Similar behavior of the
+exd —(v—60)/e]} is the sigmoid function with the threshold membrane-potential distribution has been reported also in a
¢ and the widthe [34,35, andK(® stands for an applied FN neuron mode]18,38. By using Eq.(7), we express Egs.
external input whose explicit form will be given latgEq. (1) and(2) in a Taylor expansion obup; up to the fourth-
(56)]. The last term of Eq(1l) expresses the spatially corre- order terms. The average yields DEs for the means of
lated white noiseg;(t) given by duup/dt [Eg. (16)]. DEs of variances and covariances may

dv;
' _p@ )
dt F ! ({uql})+
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be obtained by using the equations of motionssof; . For (BUp;i BUgi U SUsi) = ( SUp; SUg;){ OUyj SUs) + (S SUy; )
example, the DE fody, , /dtis given by
P X(8UqidUs;) +( SUp; SUs;){ SUq; 8Ur;),

dyu,u, 1 JIdUp; IdUg; (13
dt :Nz<(7>5uq‘+5u ( ot )> Y

1
with N Z (BUp;idUg;dUy; dUg;)
JdoU: 1 =Yu,,u,Yu, u T Yu u, Yug,u T Y uVu Uyt
—r =2 FuPoug+ 5 3 3 R (80U~ vy u,) ot tte T ot Ha e T T e T
q q r (14
1 W
(up) 1
+ = F. P 0UqidugoUy+ Opg| o
6 % 2 z uqu,ug @i Ot Ot pl(N—j_) N2 EI: EJ: (6Up;dug;our; dug))
1
2
X k(E;&:i) GU15u1k+ EGU1“1( Suy— 71’1) :Pup ,uqyur ,us‘"Pup ,ur?’uq ,uS+Pup ,usyuq U
(19

+ 3,1 (K@+ &), (12

3
+ gGululul‘sulk

The importance of including the fourth-order term has been

pointed out by Tanabe and Pakdani@8] in the improved

where g, r, and s run from 1 to K, FUp)=F(P) F(“p) moment method for a noisy FN neuron.

=gE® (Up) _ 52 (p) (u ) After some mampulaﬂo_ns, we get DEs for_ means, vari-
JFPlouq,  Fy§ =0"FPlugou, and  F R, ances, and covariances given (tetails being given in Ap-

= 7*F(P)/gu,0u,dug are evaluated at the means ¢, }).  pendix A of ):

and similar derivatives foG. In the process of calculations

of means, variances, and covariances, we have taken |nto (up) (u) (e)

=FWU 4+ — P + 6p1 WU+ K
account the fourth-order moment contributions with the use dt 2 2 u Yog v Sprl WUo 1

of the Gaussian decoupling approximation, as given by (16

d'}’up,uq

1
T:Z [FE,L:p)'Yuq,ur"'Fguq)')’up,ur]+:8(2)5p15q1+wul[5p1§uq,u1+5q1§up,ul]+g zr ES Et [F fjuﬁ)u('}’uq,ur')’us,u1

7u ugYup u, 7u u Yu, u) uuul(yU u, Yug u, ')’u ugYu, u, ')’u u Yu, u)] (17)

Pug,u 1
pla (up) (ug) 2 _
gt =2 [FyPpugu tFL Voo, 0 4 G AGH 1

1
N) :84 5p15q1+ wU,4[ 6plpuq ,ul+ 5qlpup ,ul]

1
(up)
+6 Zr Es Et [Furﬂsul(Puq,uryus,ut+Puq,us7’u,,ut+Puq,ut7ur,us) u u ut(Pu up Yug u, Pu ugYu, u,

+pup,ut'yur ,us)]a (18

with where U, expresses output spikes of the ensemhig,
=U,j, and arguments af, s, andt in the sums run from 1 to
1 K. The original KN-dimensional stochastic DEs are trans-
Cupuy™ INTT (Npu, ug ™ Yu, ) (19 formed to Neqdimensional deterministic DEs, whefé,,
=K+K(K+1)=K(K+2).

1 1
Up=— G(v)=G+ =G , 20
N ; < (v,)) 2 v Yo 20 B. Property of the DMA

In the preceding section, the DMA has been derived with
U.=G + EG 21) the use of equations of motions for moments. It is, however,
! 2 Zvvo Yoo possible to alternatively derive the DMA from the conven-
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tional moment method with a reduction in numbers of vari-The distribution of firing times of,, is given by
ables, as was shown in | for FN neuron ensembles. In Ap-

pendix A, we present a derivation of the DMA from the
moment method for a general neuron ensemble under con-

sideration.

We should note that the noise contributionﬂé in Eq.
(17), while it is [(1/N)B§+(1—1/N),8§] in Eq. (18). When
model parameters g8y, 81, w, andN are varied, the ratio
of p, ,/v,, changes. In particular, in the casew0, we

get
pv,v _ 1 1 Bl 2
Yoo N _N)(E) (22
1
=N for B;=0 (23

Equation(23) agrees with theentral-limit theorenfor inde-

pendent noises, while ER4) expresses the result for com-

mon noises. On the other hand, in the opposite limiwof

t—t*\ d .
zg<t>=¢(&—og)& fj—:)(awv), (31)
with
Bog==-2, (32)
My

whereoy=+/p, ,. In particular, in the case of no couplings,

we get
w215 (8
=\/—+|1—-—||=] forw=D0. 33
St~ VN N\ o 33

Synchronous responsg&he synchronization ratiois de-
fined by[21]

- (pv,v/7u,v_l/N) B ﬁ

—», we getp,,/y,,—1. The change in the ratio of with

Pu.v!v,,, reflects on the firing-time distributions and the de-
gree of synchronization in neuron ensembles, as will be dis-

cussed in the following.
Firing time distributions.The nth firing time of a given

neuroni in the ensemble is defined as the time when the

membrane potentiab;(t) crosses the threshold from be-
low:
toin={t[vi(t)=6;0;>0}. (25

The distribution of firing times of,;, of a given neuron is
given by[17,2]]

z to)dm ) ' 26
()~ ¢ B, dt!\ oy (o), (26)
with the normal distribution function given by
b= — Xz) @)
X)=—exp —
N2 2
and
g¢
6t0€:._. (28)
My

Here o0y=+y,, and w,=du, /dt are evaluated at=t*,
where u,(t5 )= 6. In the limit of vanishingg, Eqg. (26) re-
duces to

Z(t)=8(t—t%). (29

Similarly we may define thenth firing time relevant to
the global variableV/(t) =(1/N)Zv;(t) as[21]

tgm={t|V(t)=6;V(t)>0}. (30)

ST Ty Y
1
gu,v:<m)(va,v_7v,v)
_ 1 S
TN(N-1) 4 j(¢i)<5vi5vj>' (35

expressing the averaged covariance for the variable of

({évi}). S(t) changes as the model parametersBef B4,
w, andN are varied. It is easy to see from E¢83) and(24)
that S=0 (the asynchronous statéor w=0 and 8,< 3y,
while S=1 (the completely synchronous stafer w> /3(2) or
B1=Bo- In particular, forw=0, we get

_<Bl)2 _
S(t)y=|—=1| forw=0, (36)
Bo

which implies that the synchronization is induced by com-

mon noises.

IIl. DMA FOR HH NEURON ENSEMBLES
Equation of motions

For the HH neuron modeK=4), F® in Eq. (1) is given
by [1,23]

FO=FO)(v;,m;,hi,n)

1 3 4
=- E[QNami hi(vi—vNa) + 9k (vi—vk)

touvi—vy)], 37
FO = FU(y; uy)
= ~[ay,(v7) +by (0) upi+ay (v)  (p=2-4).
(38)
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In Egs. (37) and (38), uy;

tential of a neuron, andu,;=m;, uz;=h;, anduy =

=p; expresses the membrane po-
n; de-

note gate variables of Na and K channels for wrm,g(v)

andbup(v) (p=2-4) are given by

0.1(v +40)

am(v)= [1—e (4010’

bm( v ) =4e” (v+ 65)/18,
0.07e" (v+65)/20

an(v)=

1

bp(v)= [1+e (v+35)/10]

0.0X(v +55)

an(v)=m'

b,(v)=0.125(v+65)/80

In Eq. (37), the reversal potentials of Na, K channels and
and v =

leakage are vna=50 MV, vg=-77mV,

(39

(40)

(41)

(42

(43

(44)

PHYSICAL REVIEW E 68, 041909 (2003

—54.5 mV: the maximum values of corresponding conduc-
tances aregy,=120 mS/cmi, gx=36 mS/cm, and g,

=0.3 mS/cm;

the capacitance of the membrane &
=1 uF/cn?. From functional forms foF ) andF(“») given

by Egs. (37)~(44), we get F{)=0F"=F 6, F’%)

—F(up) 5pq, and F(UP)u =0. The number of nonvanlshlng
p’
E®)

vnn?

q
third-order derivatives is six foF ©) [F&  FO

FO o FOL, andFY) ] and two for eachF ) (p=2-4)

[FU andF“) .

vvv UUU

After some manipulations with Eq$16)—(18), we get
DEs for means, variances, and covariances giveng (

=2_4)

4 4
du 1
dtv =g 4 E Z 22 |:(vuq,yu iy + 2 Fgl:l) Yo, 0 +wUq

+K®, (45)
duy 1
G = F Y S Yt PO Yo, (49
4
dy,. _ (v) 2
T_z F Yo, v+2 F 70u +ﬁ0+2WU1§v,v
X0 (47)
dy,u
G = (PR + E F& Vg, Fo® Vo

+W§U,up+ vaup,

(48)

DYop g _ L), g LR, g
dt =( u, U )yup Ug v Yuu v 7v,up
Xy (49)
dpy., 1 1
dt =2 F( )pv U+2 l:u Py, up Nﬁé—‘r 1_N)Bi}
+2WUlpv,v+Yu,v ’ (50)
dpy (v) 4 = (up) . () (up)
_(F +F p)p +2 FuPu u+vapv,v
dt q=2 q P
+WUlpv,up+Yv,up1 (51)
dpy u
ﬁz(Ffjl;p)—{_FS;q))pu uq+Ff,Up)Pu uq+Ff,uq)Pv,up
Yy (52
with
1
gup,uq:(m)(Npup,uq_ Vup,uq)1 (53
1 1
UOZN; <G(vj)>:G+§GUU’YU,Ul (54)
1
Ul:Gv+ EGUUUYU,U! (55)

whereF®), F)=gF®)/ gy, etc., are evaluated at means of
(My s Mo s, mn). IN Egs. (45—-(52), X, , andY, ,, etc.,
denote the contributions from the fourth-order terms, whose
explicit expressions are given by Eq81)—(B6) in Appen-

dix B because they are rather lengthy. Although calculations
of the fourth-order terms are rather tedious, they play impor-
tant roles in stabilizing DEs. This is numerically demon-
strated in Appendix B for the case bf=1

The original N-dimensional stochastic DEs given by
Egs.(37) and(38) are transformed to 24-dimensional deter-
ministic DEs given by Eqs(45)—(52) with Egs.(B1)—(B6):
four means f,, wm, #n, &n), ten moments for local vari-
ables (. Ymm: Ynh» Ynns Yoms Yohs Yons Ymho
Yhns Ymn), and ten moments for global variablep,(, ,
Pmm: Phhs Pans Poms Pohs Pons Pmhs Phns Pmn)-

In this section, the DMA for the HH model has been
obtained by the method of equations of motions of means,
variances, and covariances of local and global variables. We
may, however, derive it from the moment method, as men-
tioned before. In Appendix C, DEs in the moment method
are presented for HH model.

We expect that our DMA equations given by E¢45)—

(52) and (B1)—(B6) may show much variety depending on
model parameters such as the strength of white nqise (
B1) couplingsw, and the ensemble siZ¢. In Sec. IV, we
will present some numerical DMA calculations, which are
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compared with results of direct simulations. The DMA equa- ' ' ' '

(e)
tions have been solved by the fourth-order Runge-Kutta 100 2 K~
method with a time step of 0.01 ms for the initial conditions - U, N
of w,=—65.0, u,=0.0528, u,=0.597, n,=0.317, and >
— — _ . . E
‘yup’uq—pup’uq—o (Up, Ug=v, m, h, andn). Direct simula- =
tions have been performed by solvingl4limensional DEs = |
given by Egs.(37) and (38) by using also the fourth-order -100
Runge-Kutta method with a time step of 0.01 ms. Simulation 9 .
results are the average of 100 trials otherwise noticed. 20 (ms)
T T
~ | ®
IV. CALCULATED RESULTS OF HH NEURON % 10
ENSEMBLES - " 1
A. Firing-time distribution 0 o . I
_ 0 100 120
In the present study, we pay our attention to the response t(ms)
of the HH neuron ensembles to a single-spike input applied 2 ' T ' T
to all neurons in the ensemble, given by s @
| E 1t .
K(e)(t)=(—')a(t—ti), (56) ¢
c 0 ) . N
90 100 110 120
with the alpha function t (ms)
FIG. 1. Time courses ofa) u,, (b) o¢ (=/7,,), and(c) o4
a(t):(i -9 @ 1), (570  (=1py,) for fo=0.1, $1=0, J=0 andN =100, K®, andU, in
T (@) being shown in arbitrary units.
where®(x)=1 for x=0 and 0 otherwisel; stands for the Figure 2a) showsZ,, the firing probability of local vari-

magnitude of an input spike; the membrane capacitance ables, which is calculated fo8,=0.1, 8;=0, J=0, and
[Eq. (37)], t; the input time of a spike, and, (=1 ms) the N=100. Firings occur at~103.6 ms with a delay of about
time constant of synapses. We get the critical magnitude 03.6 ms. Fluctuations of firing times of local variablé,, ,
l.,.=3.62 uAlcm?, below which firings of neuron cannot are 0.066 ms in the DMA, while it is 0.069 ms in simulations
take place without noisesgf=3,=0). We have adopted which is the root-mean-squaf®&MS) value of firing times
the value ofl;=5 wA/ cm? for a study of the response to a defined by Eq.(25). In contrast, Fig. &) showsZ,, the
suprathreshold input. We express the coupling constdnt  firing probability of global variables. Fluctuations of firing
w=J/C with J in units of uA/cm?. The time, voltage, cur- times of global variablest, are 0.0066 ms in the DMA and
rent, and noise intensity are hereafter expressed in units dfis 0.0083 ms in simulations, respectively. We note #tgf,
ms, mV, uAlcm?, and VI/s, respectively, though they are is much smaller tha@t,, [Eq. (33)].
sometimes omitted for simplicity of our explanation. We  Noise-strength dependencé/hen the noise strength is
have adopted parameters @0 mV ande=10 mV in the increased, the distribution of membrane potentials is widen
sigmoid functionG(v) such that outputl, is similar to the and fluctuations of firing times are increased, as was dis-
result given by thex function [see Fig. 1a)]. Adopted pa- cussed in Sec. II B. Filled squares in FigaBshow thep
rameter values 0B, 3, J andN will be explained shortly. dependence obt,, obtained by the DMA theory with3,
Figures 1a-1(c) show the time courses ofu,, =0, J=0, and N=100, while open squares express the
ge(:\/ﬂ), andag(:\/a), respectively, when a single RMS value of firing times obtained by simulations. The
spike is applied at=100 ms. Solid and dashed curves ex-agreement between the two methods is fairly good for
press the results of the DMA and direct simulations, respec-

tively, which are calculated with parameters@§=0.1, 8, A200 Y
=0, J=0, andN=100. States of neurons in an ensemble £ @ B0
when an input spike is injected &t 100 ms are randomized 3 7 N Ko
because noises have been already added &inbe We note £ 100 =? -
thatu, obtained by the DMA is in very good agreement with E“ ® f
that obtained by simulations as shown in Figg)lwhere an 5| Zg !
external input ofK(®)(t) and an output ofUy(t) are also AT | M

3 1032 1034 103.6 103.8 104

]

plotted. Figures (b) and Xc) show thato, ando calculated

by the DMA are again in good agreement with those of simu- t (ms)
lations. We note that the relation given by Eg3): U'g/O'g. FIG. 2. Time courses ofa) Z, and (b) Z, for B,=0.1, B,
=Py .o/ 7s.,=1N valid for w=J/C=0, is supported in =0, J=0, andN=100. Note the enlarged scale of abscissa com-

our numerical calculations. pared to that of Fig. 1.
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0.15 0.1

T T T

(b Bo=0.1
B1=0.05
N=10

0.08

~ 0.1 —_ St,,
g 2 0.06 ‘
s B 0.04
0.05 _ .
=0.1
Bos0.1 ] 0.02 Steg

N=100 - s ] I
" | N N | R
O,IOS I 0.1 g 100 200 OO 100 200
By (V/s) T (uA/em®) J (uA/em®)

FIG. 3. (8 The By dependence antb) the B, dependence of FIG. 5. TheJ dependence ob‘t_og (squares and 6t (cirgleg
Sto; (squareBand dt, (circles for B,=0 in (a) andB,=0.1in(b) ~ for (& B1=0 and(b) 5,=0.05 with S,=0.1 andN=100, filled
with J=0 andN =100, filled symbols denoting resuits in the DMA Symbols denoting resuits in the DMA and open symbols those in
and open symbols those in simulations. simulations.

Bo<0.1 but becomes worse fg8>0.1. In contrast, filled fOr So=0.1,81=0, andJ=0, obtained by the DMA theory,
circles in Fig. 3a) show the, dependence ot relevant while open squares express that obtained by simulations. We

to the global variable obtained by the DMA theory and openOté thatdt,, is independent oN because of no couplings

circles stand for RMS values of firing times in simulations. (3=0) In contrast,ét,, relevant to global fluctuations in-

We note thatét,, is much smaller thamt,, becausest, versely decreases when the sités increased, as shown by

= 5ty /N [Eq (933)] 9 filled and open circles which are obtained by the DMA
o . .

As B, is increased for a fixe@,, the contribution from theory and S|mula_t|ons, respectively. The r_elatmﬁhog
common noises increases while that from independent noisésér%\iv\/sﬁg1 2%‘?2‘?;2;"%? gyfilr:_lii(s?\,/)aﬁre%: 0(') gtlsgl\j\:i?h‘t/?)

— _ [p2_ 2 1— Y- 0
ggcrea}sesﬂc—ﬁlz Bi=VBo~B1). The B, dependence of =0.1 andJ=0. In the limit of N— o, the ratio ofét,,/ty,
iring-time fluctuations is shown in Fig.(B). Filled squares h finit | | Bo=0.5[Eq. (33 0g” =0
and circles denote the results @f, andt,y, respectively, apggﬁcliss-satrgrlwl ethvgelzjee%eﬁgs_o far[wg E]a\g‘ nealected
obtained by the DMA, and open squares and circles those b1¥1e coup Iing of] v%hich ig now introduced. Filled s Sares in
simulations. Figure ®) shows thatét,, is almost linearly Ei P hg t’h Id d 5t .I lat dqb th
increased a@, is increased, whil&t,, remains constant. In 'g. 5(& show theJ dependence obl,, calculated by the

. e . . DMA theory for B,=0.1, 8;=0, andN=100, while open
the limit of 8,= By=0.1, for which only common noises are 0 : ) . .
applied (3c=0.1 and8,=0), we getdto,=dty,, which squares that obtained by simulations. Filled and open circles

slhows that common noises do not work to reduce globaﬁ\)/(glrfs\fvae%ﬁo'tg IE;&? '\:"?‘S t:ﬁgg rig?;czgqtajls}[lso?nsérézzzﬁc-

fluctuations. ' oot ) .

Ensemble-size dependendélled squares in Fig. @) a_lth_(l)ughl t?erfeﬂl]s gtge che:jnge 'ﬁofg f I_:lgutr_e 3b) shows 6}

show theN dependence oft,, relevant to local fluctuations fsi'rm:aal; p_oo 85 Wieth BeE%nl Z?:é?\lg 1|(;|OngAg|]r2i?1 Zizté?(;}i/onor
l_ . O_ . - .

in 6ty with increasing is more significant than that ifl, -

1k Bt | B. Synchronization ratio
Ht::::" One of the important effects of the couplings is to yield
- 3 synchronous firings in ensemble neurons. Figurgs énd
2% Stog 6(b) show the time course of the synchronization r&&{o)
& o | for J=100 and 20QuA/cm?, respectively, withB,=0.1,
2 B1=0, andN=100: solid and dashed curves denote the re-
Bo=0.1 sults of the DMA and simulations, respectively. Fairly large
I ?;)0‘05 fluctuations in simulation results are due to a lack of trial

number of 100, which is the limit of our computer facility. A
B ) e w e -30 . i . é —3 comparison between Figs(é#6 and b) shows thatS(t) is
log1o(N) log1o(N) mpreased agd is mcreased: thg maximum value 8§(t) in
10 Fig. 6b) is Sy,a,=0.019 which is larger tha8,,,,=0.007 in
FIG. 4. Log-log plots ofét,, (squaresandét, (circles against ~ Fig. &b). Figure Gc) shows the time course d(t) for a
N for (@) 81=0 and(b) 8,=0.05 with 8,=0.1 andJ=0, filed  finite 5;=0.05 with B,=0.1, J=100, andN=100. A sig-
symbols denoting results in the DMA and open symbols those imificant increase iiSis realized at 10&t=<120 ms which is
simulations. induced by an applied spiKeote the difference in vertical
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0.01 : : : _ 0.5
0.008+ (a) BO:O.I . L
0.006 o 0.02 04r
“0.004 | | 10 . 403
A : M !l %) 402
e 0.01 o1
0
0 V=T33
J (uA/em®) | log;o(N)
*— T T T T
] - @ 4
Oor Smax 7]
L Be=0.1
I J=100 .
l N=100
- S'max -
..—I L I..‘.
0.05
By (V/s)

FIG. 7. The dependence of the maximum of the synchronization
FIG. 6. The time course of synchronization rasidor (a) B,  ratio on(@ J, (b) N, (c) By, and(d) B,; filled and open circles
=0.1, 8,=0, andJ=100, (b) B,=0.1, B;=0, andJ=200, and denoteS,,,, of the DMA and simulations, respectively, and filled
(c) Bo=0.1, B;=0.05, andJ=100 with N=100, the solid curve Squares express,, of the DMA (see text
denoting results of the DMA and the dashed curve those of simu-
lations. N=100. S, is increased with increasing,, and ap-
proaches unity ag;— Bo(=0.1). We note tha8/, ,, has the
scales of Figs. @—6(c)]. We note a fairly large value d  maximum atg;~0.07.
=0.25 even without an applied input spike tat 100 ort
=120. This expresses the synchronization among the mem-
brane potentials of ensemble neurons induced by added
noises although they do not induce firings. In order to distin- In the preceding section, we have reported DMA calcula-
guish the synchronization with firings from that without fir- tions for a single spike input to HH neuron ensembles. DMA
ings, we define the firing-induced synchronization ratio,calculations and simulations have shown tk@t 5t,, in-

V. CONCLUSIONS AND DISCUSSION

S'(t), given by creases with increasingy,, or decreasing, independently of
) B1 andN; (b) 6t,q increases with increasing, or 8,1, and
S()=S() =S, (58) decreasindN or J; and(c) S, increases with increasing;
or J, or decreasing3, or N.
where S,=(3,/8,)? denotes thebackgroundsynchroniza- In order to understand these behaviors, we have tried to

tion induced by noises onlfEq. (36)]. We get S,.x  obtain phenomenological, analytical expressions &y, ,
=0.369, S,,,—=0.119, andS,=0.25 in Fig. ). From a  8t,q, andS;,,4 as functions of3,, B;, J, andN. For small
comparison of Fig. &) with Fig. 6@, we note thaS'(t) is  J, we expressy, , andp, , in a power series of att=t}

also much increased by common noises. where neurons fire, given higee Appendix E of [34])
An increase ir5(t) by an increase af is clearly shown in
Fig. 7(a), where the maximum o$(t) (Sya,) is plotted as a Yoo BA(1—ad+- ), (59

function of J. A disagreement between results of the DMA

and simulations fodJ<<50 is due to fluctuations in simula-

tions because of insufficient trial number as mentioned pU’Uocﬁg
above. The dependence 8f,,, on the sizeN is shown in

Fig. 7(b), where 8;=0.1, B8,=0, andJ=100. S, is de-

creased with increasinly. Figure 7c) expresses th@, de- It is noted that in the limit oJ=0 (w=0), Egs.(59) and
pendence ofS,,,, for 8;=0.05, J=100 andN=100. At  (60) reduce to Eq(22). Substituting Egs(59) and(60) into
Bo=B1=0.05, we getS,,..=1, which is decreased as in- Eds.(28) and(32), we get
creasinggB,. Filled squares in Fig.(€) denoteS/,,,, which

shows the maximum aroungy~0.08. In contrast, Fig. (d) Sty B (1_ Zad
show theB,; dependence 08,,,, for 8,=0.1, J=100 and o= 0 291

S+ I+, (60)

S CRE

; (61)
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1_£)<&)2)1/2_ _1>J |
N/\ Bo 2JN
Equations(61) and (62) may explain the behavior oft,,
and 8t in points(a) and (b) mentioned above.

Next we will obtain the analytical expression f8f, .
For smallJ, we gety, , andp, , in a power series of at
t=t{™  whereS(t) takes the maximum value, given ksee -1005——80~""300""300 200300400
Appendix E of 1[34])

('a ) T 'K(e)l — T T T v T
(62) 100 RIS e e

Yoy

1
—+

&OQOCBO N

K, (mV)

t (ms)
yvyvocﬁg(]_—az\]-y...)’ (63) 60_ T T T T T T T T T T ]
50 ® simulation .
1 1\ [ B1)? bz) 40 l 1
2 = AL =2 e -
p"‘”MB°N+(1 N)(ﬁo) (N AR Z 30 l l ey
~—~ L =0 i
. . . = - DMA =0 -
Substituting Eqs(63) and (64) into Eq. (34), we get © fg [ ?;100 ]
B1)\? B1\? [a,—b, . ll . . .
Smax=(ﬁ—0 + bl(ﬂ—o) + N[99 00"=—100 200 300 400 500 " 600
t (ms)
Equation(65) is consistent with the poir(t): S, iNncreases _ ) _
with increasingB; andJ, or decreasingd, andN. Equation FIG. 8. Time courses ofa) ., and(b) v, for Poisson spike

inputs with the average ISl of 25 ms f8=0.1, 3,=0,J=0, and
N=100, solid and dashed curves i@ denoting results of the
DMA and simulations, respectiveli(® andU, in (a) are plotted
in arbitrary units. The result of simulations (b) is shifted upwards
by 30.

(65) shows that in the case @; =0, S,,.« IS independent of
Bo, Which is supported in the DMA calculation and simula-
tions (not shown. Expressions given by Eq&1), (62), and
(65 are useful in a phenomenological sense. In principle
expressions as given by Eq®&9) and (60) may be derived
from DMA equations given by Eq$45)—(52), although we 54 _gimensional deterministic DEs. We have studied effects
have not unfortunately succeeded in getting them because gf gise, the coupling strength, and the ensemble size on the
their complexity. firing-time precision and the firing synchronization for
Numerical calculations in Sec. IV have been made for thesingle—spike inputs, obtaining the following resulté: the

response to a single-spike input. The DMA is, however, apsjring time accuracy of the order of one-tenth ms is possible
plicable to arbitrary inputs. This will be demonstrated by;, 5 large-scale HH neuron ensemble, even without cou-

adding spike trains to HH neuron ensembles, given by pjings: (i) the spike transmission is improved with the syn-

. chronous response by increasing the coupling strength; and
K(e)(t):(—'>z a(t—t,), (66) (iii) the synchronization is increased by common noises but
C/%R decreased by independent noises.

Results(i) and (i) are consistent with the SR results in
wheret;,, expresses theth input time. Figures @) and 80)  HH neuron ensemblef28—33. Although they are quite
show the time courses gf, anda, (=, .,), respectively, similar to the case of FN model discussed in I, thggianti-
for Poisson spike trains with the average interspike intervatative discussions are possible with the use of the realistic
(ISI) of 25 ms; solid and dashed curves express results of theH model. Resultiii) agrees with the result of Ref31] for
DMA and simulations, respectively, fg8,=0.1, 8,=0, J SR in HH neuron ensembles subject of common and inde-
=0, andN=100. The time course g&, of the DMAis in  pendent noises.
good agreement with that of simulations. A comparison be- Our calculations have demonstrated the feasibility of the
tween the inpuk(® and outputU, shows that when the ISI DMA, whose advantages may be summarized as follg®ys:
of input is shorter than about 10 ms, HH neurons cannobecause of the semianalytical nature of the DMA, some re-
respond because of the refractory perj@8]. Figures &b) sults may be derived without numerical calculatio(®;the
shows thato, of the DMA is also in good agreement with DMA is free from the weak-coupling constraint although it
that of simulations. assumes weak noise) a tractable small number of DEs

To summarize, the DMA theory previously proposed for makes calculations feasible for large-scale neuron ensembles
FN neuron ensemble in | has been generalized to an ewith a fairly short computational timg¢#) the DMA may be
semble described b¢N-dimensional stochastic DEs, which applicable to ensembles with fluctuations not only due to
has been replaced bi{(K+2)-dimensional deterministic noises but also due to some inhomogeneities in model pa-
DEs expressed by means and second-order moments: contrameters; and5) the DMA can be applied to more general
butions from the fourth-order moments are taken in accounstochastic systems besides neuron models.
by the Gaussian decoupling approximation. The DMA has As for point (3), we may indicate that, for example, the
been applied to HH neuron ensembles, for which we geCPU time of DMA calculations for a 200 ms time course of
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aN=100 HH neuron ensemble with the use of 1.8-GHz PC C'u' " Cu C'u' . Ch J u )

is 2 s, which is about 2500 times faster than the CPU time of ' !

85 min (~5000 s) for direct simulations with 100 trials. It is + U (C CJ i +CL' . CI i

necessary to stress the importance of the fourth-order contri- trjlsith s t e

butions in stabilizing solutions of the DMA, which is nu- +C{JJ UICJ i ) )1, (A4)

merically demonstrated in Appendix B. Although expres-
sions for the fourth-order contributions are lengthy, we are
much benefited from them once they are derived and plante‘g Upi Usilyi
into computer programf39]. We are now under consider- =J®F®P/gu; dugauy are evaluated for the means of
ation to incorporate the time delay in the coupling terms in({m}, }), and the last term in EqA4) denotes the fourth-
Eq. (1), with which the HH neuron ensemble may show theorder contribution. The number of DEs idle;=KN
intriguing behavior like chaos. Such calculations will be re- 1 (1/2)K N(KN+1)=(1/2)KN(KN+3).

ported in a separate paper. In order to derive the DMA from the moment method, we
define the quantities given by

here FUp=F®P), F(up) aF®/gu,, and FP)
eq—
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APPENDIX A: DERIVATION OF THE DMA FROM THE — 1 i
MOMENT METHOD FOR GENERAL NEURON Per= 2 2. 2 Ch (k) =up.up) (A7)
ENSEMBLES
In the moment method, we define the means, variancedvhere
and covariances given Q7] 1
d,=— > om.sm|, A8
my = (Upi), (A1) “*N Z N (A8)
. P
c:;,i,Uq=<AupiAuq,->, (A2) oM =M™ Hc (A9

We may show that Eqsﬁ@) and(A4) with Egs.(A5)— (A7)
where Aup;=up—m Uy . Assuming the weak couplings and yield Eqs. (16~(18) fe=fix: Yir=7er, and pen

adopting the Gaussian decoupling approximations for the-, . Then the moment method yields the same results as
fourth-order moments, we get DEs for general neuron enthe DMA as far as the averaged quantities are concefses

sembles described by Eq4) and(2): also Appendix B of ).
i
_E )+ 2 E F(up) (| i) APPENDIX B: THE FOURTH-ORDER CONTRIBUTIONS
dt : Upj 7 Ug Uy IN THE DMA FOR HH NEURON ENSEMBLES

+ 6,

The fourth-order contributions given bX, , andY,
)+K(e)} (k,N=v,Up) in Egs.(45)—(52) are expressed by

w 1
k,k
1 (m) k(E#:i) (G+ EGulkulkCul Uz

(A3) X = Fyl;nm( Yv,0Ym, m+2'yu m7Yov, m) T vah( Yv,vYmh

dC' J +27v m7v,h)+ Fvl;m( 7u,u7n,n+2')’u,n7v,n)
(U ) i 1 (Ug) ~isj 2 2
F.P C,) ,tF ¥C + S+
dt E [ Ur Urj up'uf] ['80 " P +F(Umm7v mYm, m+ngn)nyv,nyn,n"'FSTl])r)nh(')’v,h')’m,m
w i K +27v,m7m,h)a (B1)
X(1= 81800+ 0 =1 | 2 CunCliga,
ik X = _[vam Yo,u 7m,m+2')’u ,m'yu,m)_"Fl(;l;T)]h('yu,u Ym,h
+6, o P P P
ql N—1 k(#]) ulk up,u1
1 + 7u mYu,ht 7u ,h')’v,m)"'Fz(;l;\)n( Yu,u Yn.n
_ (up) I i i,j
+ 6 2 ES E [F Ur.Us.Ut. 'usCut’uq +2')’u .nYv, n)'H: mm7u m¥Ym, m+ann'yu nYnn
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FF R Y, nYmmt 270 m¥mn) FF R Yo Yo 100 ' '
FF o Yoy Yo+ 2000 o)) (B2) S

E
1 =

Xuy 1= 5 LF oo Yortg You + Pt Vo Yot (FLE) +F L) 06
X(Yup v Yoot 2%0,u,Y0.0) ] (B3)

Yoo =FSm(pow Ymmt 200 m¥o.m) + FUd(Ps 0 Ymn 5 sof ® E - 01
+ Po,m¥o.nt PonYo.m) T F (o0 Vit 2000 Y0,0) E o0r é : N-l
Dot t Fhu i pentmn ool RE i
+2py,mYmn)s (B4) L

1
_ Z{E® ()
Yo,u,= S LFommPou, Ymm+ 200, mYo,m) T Fomn(Py,u, Ymn FIG. 9. Time courses ofa) u, and (b) o¢(=7,,) With Bo

=0.1, B;=0, andN=1 for constant current input df= 20, solid,

+Pup ,m70,h+pup hYo,m) T Fz(;l;\)n(pv,up'yn,n dotted, and dashed curves denoting results of the DMA, DMA2
©) ©) second-order DMA and simulations, respectively. A constant input
+29up nYon) T Frrl:mnpup mYmmTt annnpup nYn,n current is shown at the bottom ¢) (see text
(up)
+F(ngznh(Pupthm,m+2Pup,m7m,h)+ Fov Pow Yoo Figures 10a) and 1@b) show the time courses ¢f, and
(u.) o, for Bp=0.2 andB,=0 when we apply the periodic spike
+Fuﬂ;p( Vv,uva,v+2Pv,v7v,up)]* (BS)  train input given by Eq(66) with I;=5 pAlcm? and a con-

stant ISI of 25 ms. Figure 1b) clearly shows that the result

of the DMAZ2 deviates from those of the DMA and simula-
tions from the first spike-input, and that the result of the
DMAZ2 diverges at the second spike input. The solution of

(ug) (ug) the DMAZ2 is stable only at3=<0.178 for this periodic
+Fuuipv,up')’v,u—"FUUquq(Pup,uq'Yv,u spike.

#2050 Vo) (B6)

1wy (up)
Yup,uq_ E[Fvvv pv,uqyu,v+Fvvup(pup,uq7v,0+va,uqyu,up)

APPENDIX C: THE MOMENT METHOD FOR HH

(v) 3-(v) . NEURON ENSEMBLES
where F2,=d°F'"//dvomdh, etc. Although calculations

and computer programming of fourth-order contributions We will derive DEs in the moment method for HH neuron

given by Eqs(B1)—(B6) are rather tedious, they play impor- ensembles, defining the means, variances, and covariances

tant roles in stabilizing the solution of DE89]. given by[17]
Here we demonstrate the importance of the fourth-order

contributions in the case of a single HH neuraw={1) for

whichw=0, vy, ,=p.,, andX,,=Y,, in Egs.(45—-(52)

and(B1)—(B6). Figure 9a) shows the time course af, for

Bo=0.1 and B,=0 when the constant input ofl; m' =(u,;) (C2)

=10 uAlcm? is applied att=0 ms. The solid and dashed Yp TP

curves express the results of the DMA and the simulation

(100 trial9, respectively. The dotted curve denotes the result Cll =(Av,Av;) (C3)

of the DMAZ2 (the second-order DMAIn which the fourth- vy e

order contributions are neglecteX,(,=Y,,=0). Fort

<60 ms, all results seem to be in good agreementt At cl, =(Av;Auy), (C4)

=60, however, the solution of the DMA2 becomes unstable P

and significantly deviates from those of DMA and the simu-

lation. From the time course af,= 'y, , shown in Fig. Cl , =(AugiAug), (C5)

9(b), we note that such deviation of the DMA2 already starts P

from t~30 ms. The solution of the DMA2 is stable &t ‘ .

<0.037 for the constant current bf=10 uwAlcn?. where Av;=v;—m) and Aupi=upi—m'up. Adopting the

m), = (v;), (CD
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FIG. 10. Time courses df) u, and(b) o¢(=y7v,,) with By
=0.2, B;=0 andN=1 for a periodic spike train input with an ISI

of 25 ms; solid, dotted, and dashed curves denoting results of the

DMA, the DMA2 (the second-order DMA and simulations, re-
spectively. A periodic input spike is shown at the bottomaf(see
text).

weak-coupling approximation and the Gaussian approxima-

tion for the fourth-order terms, we get DEs given by

dm| 13 < - ‘ N
)y = (vi) iy (Vi) ~isi
g =F+ 5 pgz qu Fup’uqc:%,uqupg2 F o Cilu,
o G0+ ZgeOckk| ke
N—1/Z) 2 Twv o '
(Co
dm, 1 Upd i o e Up) i
gt SFWHSFICLFREC,, (€D
Col _ortongi +§4: FO) (Gl 4 i
dt - v v,V =5 up( v,up, v,up)
FB25,+ BEH1- 8]+ |~ || S GEWClK
[ Bodij + Bi( i)l N—1)|&) G0 Cow
+ > GUWcik |47 (C8)
k=) © ’
aci, :

P_ i) (Upi)y i (i)~ (Upi) ~ij
gi —(FUHRP )Cv'upﬁ;z FuCilu,t FL P U

w

m) P

(#1)

+ Gkl +7i
v p

U,Up’

(C9
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dC'u';,uq_ FOnGil 4 Fla)Gii )4 )G
dt _( up Uq,Up Llq up'uq v U,Uq
FRUICH, 7, c10
with

Z,, = 5 F il Culy Chilm T 2C, 5 Clin+ C . Clitm
2l P CH,Chly+ Gl
+ChCln+ Cl,Crint CllnCyln+ CLhClm)
+F)

vnn

G ol L)+ P G Ch

(CH,Chi+ 2C1,Ch + L Cly + 2CLCl)

Ol Gl Fih Coh e 2C1CHl

+ChhChm+2CH ChlT, (11

v,u

2.1, = 5 TP Clly Chtat 2CH,, i)

+ Fz(f;%h(Ciu',jupcirhi,h+ Cir{nj,upci},ih”L Cih’,jupCL',im)
#FU(CL, Chin 2G4, Cln)+ Fithei, Ch
+FChly Chint Fih( CHly Clt o 2CH, Ch

+FUcli cli +F

W) (i gl 4 och Cid
vvv . (C;),]Upcf),JU_FZC:),JUC{},JUp)]’

u
UUp

(C12

Z4) = STFUCH, Vi +F Y (i, i

vovv UUUp

+2C%, Cily ) +FLYCY Ll

VvV

+ e (Cy! o Chh+2Cy! Chl)1 (€13

UUUq

where F®i), Fi”‘)zaF/aui, and F% =3°Fldv;duy,; are
evaluated for the averages ahil(,{mLp}), and similar de-
rivatives forF (s andG{“¥. Equations given by Eq$C6)—
(C13) denote the result of the fourth-order moment method.
The second-order moment method was applied to a single
HH neuron by RT[19,20, whose result is given by Egs.
(C6)—(C10 when we sei=j=1, w=0, 3,=0, andZ, ,
=Zvlup=Zup,uq=O. EquationgC6)—(C13) lead to the DMA
equation given by Eqg45)—(52) and(B1)—(B6) if we adopt
the relations as given by EQ#5)—(A7). In particular, in the
case ofN=1, Egs.(C6)—(C13 are identical with Eqs(45)—
(52) and (B1)-(B6) of the DMA if we readmy=u,, Cr}
=Y N"T pK,)\ ’ andzi‘,:l)-\: XK,)\: YK,)\ .
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